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Monte Carlo methods have been used as reference reactor physics calculation tools worldwide. The advance in
computer technology allows the calculation of detailed flux distributions in both space and energy. In most of the
cases however, those calculations are done under the assumption of homogeneous material density and temperature
distributions. The aim of this work is to develop a consistent methodology for providing realistic three-dimensional
thermal-hydraulic distributions by coupling the in-house developed sub-channel code SUBCHANFLOW with the
standard Monte-Carlo transport code MCNP. In addition to the innovative technique of on-the fly material definition,
a flux-based weight-window technique has been introduced to improve both the magnitude and the distribution of the
relative errors. Finally, a coupled code system for the simulation of steady-state reactor physics problems has been
developed. Besides the problem of effective feedback data interchange between the codes, the treatment of
temperature dependence of the continuous energy nuclear data has been investigated.
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l. Introduction

MCNP [1] is a well-known code for performing criticality
and fixed source neutronics calculations. These calculations
are usually done using homogeneous distributions of the
thermal-hydraulic boundary conditions. This assumption is a
rather crude approximation. Both, the eigenvalues and flux
distributions, computed in this manner, are only approximate
and can be much different from the actual steady state
conditions in the reactor core, especially at reactor operating
conditions. MCNP has not been designed for performing
coupled  thermal-hydraulics  calculations. = Defining
distributions in MCNP using only the default features of the
code is very inconvenient. This reduces to explicitly defining
material cells, where the distribution values are supplied. In
practical terms this means defining a huge number of cells.
This is necessary even for simple (at first glance) problems,
such as single fuel assembly model. In order to overcome
this difficulty, a more generic approach of coupling via
common modules and supplying the feedback data on the fly
is proposed.

Proper introduction of the thermal hydraulic feedback is only
one side of the problem. Another major issue is the
non-uniform distribution of the relative errors. Calculating
large loosely coupled criticality problems typically results in
very large variances, difficult to resolve with simple increase
of the neutrons histories. Such a strategy is highly inefficient
due to the non-uniform distribution of the relative errors.
Using it, one obtains significant effect on the relative errors
in regions with high flux values, while only small gain is
obtained in the regions with small flux estimates. Increasing

the number of the neutron histories results also in an
unacceptable increase of computing time. In this paper, the
technique of defining weight windows, based on the flux
estimate, is applied 4. Using this technique it has been
possible to produce both uniform distribution of the relative
errors and their reduction in magnitude.

I1. Coupling between MCNP and SUBCHANFLOW

MCNP uses multi-level geometry notion, meaning that the
neutrons have set of coordinates, defined at each level of the
problem geometry. The multi-level notion of the MCNP
geometry is connected to the universe and repeated structure
concepts, allowing the insertion of separate geometry units
in other units or lattices. For instance the positioning of the
individual pins within the core can be described by using the
following geometry structure:

PIN_CELL <
<PIN_LATTICELipin,JpinsKpind<
<ASSEMBLY_LATT 1 CE[iassembly ,j assembly » kassembly]

In MCNP neutrons are tracked, and at every instant of their
path each one of them has a specific set of lattice indices
attached. These lattice indices are used for the definition of a
bijective mapping between the neutronic and the
thermal-hydraulic domains. Using this mapping and
knowing the neutron coordinates, continuous supply of
thermal-hydraulic feedback parameters is done, while the
neutron is moving throughout the space. According to this
method only the geometry dimensions should be properly
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defined. The initial material specification is arbitrary, since it
is continuously updated during the criticality calculation. A
graphical illustration of the coupling strategy is shown in
Figure 1:

Figure 1: Continuous supply of feedback data and the effective
geometry seen by the neutron as it moves.

In practical terms the implementation of the method relies on
the fact that MCNP recalculates the values of the
macroscopic nuclear cross sections according to the position
and the energy of the neutron. If the standard version of
MCNP is to be used, the code will retrieve the material
distribution defined in the input. Using the current method,
however, the coupled scheme intervenes before the values of
the relevant macroscopic cross sections are calculated and
supplies the proper nuclear data in accordance to the thermal
hydraulic feedback. If the cell is filled with moderator, the
proper density values have to be supplied. In this manner
one introduces a thermal hydraulic distribution independent
on the initial input. To account for the temperature
dependence of the nuclear data the pseudo material mixing
(PM) has been used 3. Although simple for the single
differential data, dealing with the double differential cross
section is more involved. In this case one has to assign also
the proper thermal scattering data tables. Since it is not
possible to use two different thermal scattering evaluations
for the same isotope within single material, the PM has to be
modified. This is done by introducing artificial isotopes of
hydrogen corresponding to the different temperature
evaluations. Using this strategy, the pseudo material mixing
reduces to Figure 2.
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Figure 2. lllustration of the pseudo material thermal
scattering mixing for 573.6 K

Therefore, a special subroutine capable of selecting the
proper thermal scattering data has been included.

MCNP must be run in parallel for all serious problems larger
than few pins. Therefore, when introducing feedback one
should make sure that all of the slave processes receive
proper feedback information. MCNP calls the MPI routines
via FORTRAN-C binding DOTCOMM. The same
formalism has been kept for the extensions regarding the

intermodal communication. SUBCHANFLOW has been
included in the MCNP source as a separate subroutine. In the
coupled scheme the thermal-hydraulic calculations are run
on the master node, and once they have converged the results
are transferred to all of the slave processes. From this point
further the criticality calculation is initiated. To speed up the
calculation, the necessary information for building the
temperature dependent macroscopic cross sections is stored
into arrays on the master node. Therefore, during the actual
neutronic calculation, ready to use information is retrieved
and the nuclear data selection process is avoided. All the
necessary nuclear data has to be loaded into the memory,
before the selection subroutine starts. This is done by using
dummy material. For the thermal-hydraulic analysis the
SUBCHANFLOW code, which is under development at the
KIT has been used. It is a 3-equation based sub channel code,
used to solve energy, mass and momentum conservation
equations for vertical flow conditions.

I11. Testing the code modifications

Since we are introducing a method, which is expected to be
completely equivalent to the standard MCNP input, verifying
the coding is rather straightforward. The first test case has
been a 3x3 pins BWR problem with 60 axial nodes. The
second case has been a 17x17 pins PWR assembly problem.
Finally, in order to verify the embedded surface case, the 3x3
BWR problem has been embedded into a larger 2x2 lattice.
In all the cases a thermal hydraulic distribution has been
simulated with the internal coupling and compared to the
standard MCNP input. In both the cases both the fission heat
deposition and the eigenvalues were absolutely identical.

IV. Coupled calculations with the newly developed
code system

Each coupled calculation begins with a SUBCHANFLOW
run, assuming a cosine axial power profile and a flat radial
pin power distribution. Following the previous work
performed at KIT [3], the variation of the node averaged fuel
temperature has been used for monitoring the convergence.
The following criterion (1) has been imposed on the fuel
temperature, and has been used as an estimate for the
convergence.
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Here, the indices is the pin number and “j” is the axial
cell number. The indices run over all pin cells in the problem.
It should be taken into account that the tallies used to sample
the power profile distribution have statistical uncertainties
affecting the fuel temperature.
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V. Accelerating the coupled calculation

Running simple  consecutive iterations of  the
thermal-hydraulics and neutronics codes will not produce a
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steady convergence behavior. To accelerate the coupled

calculation a stochastic approximation scheme has been used.

Complete mathematical derivation of the scheme can be
found in references 6,5.

The steady state power distribution is a fixed point of the
following nonlinear problem.

»=G(T(p),H(p)). )

H(¢) and T(@) are the density and temperature distributions.
The value of G(T(@),H(w)) is estimated by the Monte
Carlo code with superimposed statistic noise €. The
Monte-Carlo estimate of the left hand side of (2) is defined
as (3)

Y(p)=G(T(p). H(p)) +¢ €)

The problem as given by (2) can be in principle solved by an
iterative scheme, consecutively updating H(¢p) and T(o).
However, this is a very inefficient method. Moreover, the
convergence will be limited by the magnitude of e.
Therefore, in order to achieve convergence one must run a
large number of iterations, applying huge number of particle
histories. Based on this, it is recommended to use an
acceleration scheme. In the past relaxation scheme, acting on
the thermal-hydraulic parameters only, has been used 3. The
old relaxation scheme is described by the equation set (4),

where “i” is the iteration step number.
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This scheme accelerates the convergence. Unfortunately the
value of the convergence parameter is still correlated to the
statistical noise. The natural method of acceleration for
problem (2) is to use a stochastic approximation technique
5,6. The theorem of Robbins and Monro is the key
ingredient need to justify the new relaxation scheme. The
formulation of the theorem as well as the proof can be found
in 7. The basic idea is, that by observing random variables
Y(p,) having unknown distribution, roots of the unknown
underlying distribution can be found. In the particular case
this description fits precisely the estimate of (3). Applying
the Robins - Monro theorem the following expression for the
flux after running (n) iterations has been derived

ay I X
9" ”=;ZY(¢,-) (5)
i=1

Formula (5) gives the explicit formulation of the relaxation
scheme. The flux (power profile) in the next coupled
iteration is obtained to be the mean value of all the previous
iterations. Since the tally estimates from all the runs are
added together, simple error propagation with partial
derivatives on (5) shows a decreasing error when increasing
the number of iterations. Moreover, it follows that all

iterations are reflected in the final solution with weight 1/n.
Therefore, any desired convergence parameter can be
achieved, if enough number of iterations are run. This is still
possible even with low number of histories. Nevertheless,
the number of histories and the number of inactive cycles
should be chosen adequate, to ensure the fission source
convergence. Moreover, the effect of increasing the number
of histories in the old scheme is achieved by running more
iterations in the new scheme.

In Figure 2 the scheme of the
MCNP5/SUBCHANFLOW is shown.

SUBCHANFLOW

coupled system
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I fuel® T coolant” pcmsl;m

Figure 2: Couple MCNP5/SUNCHANFLOW system

V1. Variance reduction with flux based Weight
Windows

Performing coupled iterations requires tallying of the
neutron fission rate in geometries containing thousands of
cells. Achieving proper statistical uncertainties is necessary,
if one desires to reduce the number of iterations needed for
convergence. Achieving this goal is not a trivial task. The
main problem is the non-uniform distribution of the relative
errors. Therefore, brute-force increase of the number of
histories would be very inefficient. The utilization of a
variance reduction scheme is a more adequate alternative
method.

Assume that the problem is subdivided into cells and one
would like to obtain as small as possible relative error in
each cell. In the particular case, these are the lattice unit cells.
Moreover, the relative errors should have uniform
distribution. This can be achieved if one can ensure equal
particle population in each cell. Using Weight Windows
(WW), MCNP can be forced to split the particles when
entering low populated cells. Suppose the middle of the WW
in each cell is set proportional to the flux estimate in it. In
regions with low flux levels, WW with low upper bounds
and exactly the opposite for highly populated cells are
obtained. Therefore, the particle population is increased in
the due cells without biasing the total score. This idea has
been proposed in 4. There, the lower bounds of the WW
have been set according to the following formula

Wipw = (B +1)/2) 1 2 (6)

Maxe;
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Close observation of (6) shows that the reference cell is the
one having the largest flux estimate. In all other cells the
particles are split in order to obtain the same population as
that in the reference cell. In those regions where the flux
score is low, almost all particles entering the cell have
weights higher than the upper bound of the WW. Therefore,
they would be divided into number of daughter particles
with weights modified to fit into the WW. The parameter 3
is the ratio of the upper and lower bounds of the WW. The
default value of MCNP, =5, has been used. In practice the
method involves generating a WW file (WWINP) with a
MCNP flux tally. The WW mesh should be set to precisely
overlap the mesh tally. The WW file is updated with each
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coupled iteration. To illustrate the results of this technique
consider the following plots showing the distribution of the
relative errors Figure 3,Figure 4. It is evident that applying
large number of neutron histories has not solved the problem
of large relative errors and their non-uniform distribution.
Using flux based WW mesh however has produced a very
uniform relative error distribution, having similar in
magnitude values in comparison to the analog calculation. It
should be noted that UOX and MOX assemblies with
different enrichments are present in the problem, which
explains the slightly different values. For performing these
comparison tests, thermal hydraulic boundary conditions
from the first coupled iteration have been used.

Figure 3: Plot of the relative error distribution for the first axial level. The values shown in the left plot are obtained with 220k
histories per cycle and no WW. The values in the right plot are generated with WW and 100k histories per criticality cycle.

0
Figure 4: Plot of the relative errors distribution for the mid plane. The same problem as in Figure 2
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V. Applying the coupled scheme to a PWR mini-core

Having described the coupled scheme and the convergence
acceleration strategies, it is possible to proceed further
describing the computational problem. A PWR 9x9 fuel
assembly problem has been selected. This large problem was
chosen with the purpose of demonstrating the capabilities of
the coupled scheme. Due to this reason, it was chosen to run
a pin-by-pin calculation. The geometry and the material
definitions have been derived from the PWR UOX-MOX
benchmark 8). Variation in comparison to the benchmark
has been introduced by using only one type of pins. Two
types of fuel assemblies have been used, MOX with 2.5 wt%
Pu and fresh UOX with 3.8 wt% U235. Coolant containing
1500 ppm Boron has been used. The fuel assembly map is
shown below.

MOX uox MOX
uox uox uox
UoXx MOX uox

This enrichment pattern has been selected to introduce
more pronounced differences in the assembly power
distribution. = The  thermal-hydraulic = boundary
conditions have been identical to those described in the
benchmark. The total of 104040 individual cells has
been defined. The fission rate has been tallied in 52020
volumes. Each assembly has been divided into 20 axial
nodes. The power profile has been tallied with a mesh
tally. This input would have been impossible to define
and compute with the standard capabilities of MCNP.
The resulting input for the neutronics would have
consisted of over a million input lines. Using the
method of internal coupling between the
thermal-hydraulic and neutronic codes, it has been
possible to define a very simple input and run the
problem  without obstacles. The coupled

any

Figure 5: Fission rate distribution for two vertical cuts.

calculation has been run on 80 processors and each
MCNP run took approximately 35 mins. In spite of the
complicated geometry, uniform convergence behavior
has been observed. It has been possible to achieve
convergence £=0.114%. The convergence parameter
has been observed to fall below 0.5% after running 7
coupled iterations. The coupled calculation has been
run 25 iterations and therefore, it was possible to reach
values of the convergence parameter significantly
lower than 1%. This has been done only to test the
stability. Variations of 0.5% are on the order of 1.5 K in
absolute value. The criticality eigenvalue has shown
large inertia towards the change in the
thermal-hydraulics conditions. Converged in terms of
the criticality eigenvalue have been considered those
runs with criticality eigenvalue not oscillating outside
of the band defined by the eigenvalue statistical
uncertainty. The eigenvalue convergence was reached
after running 3 coupled iterations. The first results from
the coupled calculation to be shown are two
dimensional plots of the fission rate form the first and
core mid planes. Note the very low estimate in the first
node compared to the values from the core middle
corresponding to cosine- like distribution Figure 5Note
also the differences in the assembly powers,
corresponding to the different enrichments.

B e 3

LE|

408

B 06

; “i_* L

04

0.2

EEE




Joint International Conference on Supercomputing in Nuclear Applications and Monte Carlo 2013 (SNA + MC 2013)

La Cité des Sciences et de 1’Industrie, Paris, France, October 27-31, 2013

In addition to the radial fission rate distribution, axial
distribution is shown in the following Figure 6. The indices
showing the pin location have the following meaning. Each
assembly is represented by a two-dimensional matrix with
dimension offsets INDEX|<17 and the fuel assembly map is
represented by a matrix having dimension offset INDEX|<I.
The reader might right away see the effect of the WW
technique used to reduce the variance. The power profile is
smooth and has no unphysical tilts.

1200
o ® e
] . .
L4 - L]
1100 - - ~
o AVTHR e
y ¥ .
- -
3 | 'y
= 1000 g e \. .
= ¥ &
2 o X L )
£ 9004 " A e
= N A A
E e :
[ K
L 800 N
2 A : . &
L / —m— ASSEMBLY] -8 -8] CORE[ -1 -1) B
700 & ® - ASSEMBLY[ 4 -6] CORE[ -1 -1] -
] / A ASSEMBLY[ -3 -4] CORE[ 00 ] ]
1 v ASSEMBLY[ 0 2] CORE[10]
600
T T T o T L T ' T
0 5 10 15 20
Axial Node [N]

Figure 6: Axial distribution of the fission power deposition for
selected pins.

V1. Conclusions and outlook

Using the internal coupling scheme has made a large coupled
calculation between MCNP and the thermal-hydraulics code
SUBCHANFLOW tractable. The convergence has been
stabilized using a stochastic approximation technique. The
efficiency of the power profile estimate has been improved
by applying a flux based Weight Window scheme. All those
innovations have resulted in a consistent calculation, capable
of achieving the desired convergence. Currently the
calculations scheme is under testing on a quarter core PWR
model.
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