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Monte Carlo methods have been used as reference reactor physics calculation tools worldwide. The advance in 

computer technology allows the calculation of detailed flux distributions in both space and energy. In most of the 
cases however, those calculations are done under the assumption of homogeneous material density and temperature 
distributions. The aim of this work is to develop a consistent methodology for providing realistic three-dimensional 
thermal-hydraulic distributions by coupling the in-house developed sub-channel code SUBCHANFLOW with the 
standard Monte-Carlo transport code MCNP. In addition to the innovative technique of on-the fly material definition,  
a flux-based weight-window technique has been introduced to improve both the magnitude and the distribution of the 
relative errors. Finally, a coupled code system for the simulation of steady-state reactor physics problems has been 
developed. Besides the problem of effective feedback data interchange between the codes, the treatment of 
temperature dependence of the continuous energy nuclear data has been investigated.         
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I. Introduction  

MCNP [1] is a well-known code for performing criticality 
and fixed source neutronics calculations. These calculations 
are usually done using homogeneous distributions of the 
thermal-hydraulic boundary conditions. This assumption is a 
rather crude approximation. Both, the eigenvalues and flux 
distributions, computed in this manner, are only approximate 
and can be much different from the actual steady state 
conditions in the reactor core, especially at reactor operating 
conditions. MCNP has not been designed for performing 
coupled thermal-hydraulics calculations. Defining 
distributions in MCNP using only the default features of the 
code is very inconvenient. This reduces to explicitly defining 
material cells, where the distribution values are supplied. In 
practical terms this means defining a huge number of cells. 
This is necessary even for simple (at first glance) problems, 
such as single fuel assembly model. In order to overcome 
this difficulty, a more generic approach of coupling via 
common modules and supplying the feedback data on the fly 
is proposed. 
Proper introduction of the thermal hydraulic feedback is only 
one side of the problem. Another major issue is the 
non-uniform distribution of the relative errors. Calculating 
large loosely coupled criticality problems typically results in 
very large variances, difficult to resolve with simple increase 
of the neutrons histories. Such a strategy is highly inefficient 
due to the non-uniform distribution of the relative errors. 
Using it, one obtains significant effect on the relative errors 
in regions with high flux values, while only small gain is 
obtained in the regions with small flux estimates. Increasing 

the number of the neutron histories results also in an 
unacceptable increase of computing time. In this paper, the 
technique of defining weight windows, based on the flux 
estimate, is applied 4. Using this technique it has been 
possible to produce both uniform distribution of the relative 
errors and their reduction in magnitude. 
 
II. Coupling between MCNP and SUBCHANFLOW  
 
MCNP uses multi-level geometry notion, meaning that the 
neutrons have set of coordinates, defined at each level of the 
problem geometry. The multi-level notion of the MCNP 
geometry is connected to the universe and repeated structure 
concepts, allowing the insertion of separate geometry units 
in other units or lattices. For instance the positioning of the 
individual pins within the core can be described by using the 
following geometry structure: 
 

PIN_CELL	< 
<PIN_LATTICE[ipin,jpin,kpin]< 

<ASSEMBLY_LATTICE[iassembly,jassembly,kassembly] 

 
In MCNP neutrons are tracked, and at every instant of their 
path each one of them has a specific set of lattice indices 
attached. These lattice indices are used for the definition of a 
bijective mapping between the neutronic and the 
thermal-hydraulic domains. Using this mapping and 
knowing the neutron coordinates, continuous supply of 
thermal-hydraulic feedback parameters is done, while the 
neutron is moving throughout the space. According to this 
method only the geometry dimensions should be properly 
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defined. The initial material specification is arbitrary, since it 
is continuously updated during the criticality calculation. A 
graphical illustration of the coupling strategy is shown in 
Figure 1:  
     

  
Figure 1: Continuous supply of feedback data and the effective 

geometry seen by the neutron as it moves. 
 

In practical terms the implementation of the method relies on 
the fact that MCNP recalculates the values of the 
macroscopic nuclear cross sections according to the position 
and the energy of the neutron. If the standard version of 
MCNP is to be used, the code will retrieve the material 
distribution defined in the input. Using the current method, 
however, the coupled scheme intervenes before the values of 
the relevant macroscopic cross sections are calculated and 
supplies the proper nuclear data in accordance to the thermal 
hydraulic feedback. If the cell is filled with moderator, the 
proper density values have to be supplied. In this manner 
one introduces a thermal hydraulic distribution independent 
on the initial input. To account for the temperature 
dependence of the nuclear data the pseudo material mixing 
(PM) has been used 3. Although simple for the single 
differential data, dealing with the double differential cross 
section is more involved. In this case one has to assign also 
the proper thermal scattering data tables. Since it is not 
possible to use two different thermal scattering evaluations 
for the same isotope within single material, the PM has to be 
modified. This is done by introducing artificial isotopes of 
hydrogen corresponding to the different temperature 
evaluations. Using this strategy, the pseudo material mixing 
reduces to Figure 2.   
 
 m1 1004.97c 0.333333 $ H 523.6 K 
  8016.97c 0.166667 $ O 523.6 K 
  1006.99c 0.333333 $ H 623.6 K 
  8016.99c 0.166667 $ O 623.6 K 
 mt1 lwal06.31t lwal08.31t 

Figure 2. Illustration of the pseudo material thermal 
scattering mixing for 573.6 K 

          
Therefore, a special subroutine capable of selecting the 
proper thermal scattering data has been included. 
MCNP must be run in parallel for all serious problems larger 
than few pins. Therefore, when introducing feedback one 
should make sure that all of the slave processes receive 
proper feedback information. MCNP calls the MPI routines 
via FORTRAN-C binding DOTCOMM. The same 
formalism has been kept for the extensions regarding the 

intermodal communication. SUBCHANFLOW has been 
included in the MCNP source as a separate subroutine. In the 
coupled scheme the thermal-hydraulic calculations are run 
on the master node, and once they have converged the results 
are transferred to all of the slave processes. From this point 
further the criticality calculation is initiated. To speed up the 
calculation, the necessary information for building the 
temperature dependent macroscopic cross sections is stored 
into arrays on the master node. Therefore, during the actual 
neutronic calculation, ready to use information is retrieved 
and the nuclear data selection process is avoided. All the 
necessary nuclear data has to be loaded into the memory, 
before the selection subroutine starts. This is done by using  
dummy material. For the thermal-hydraulic analysis the 
SUBCHANFLOW code, which is under development at the 
KIT has been used. It is a 3-equation based sub channel code, 
used to solve energy, mass and momentum conservation 
equations for vertical flow conditions.  
  
III. Testing the code modifications 
 
Since we are introducing a method, which is expected to be 
completely equivalent to the standard MCNP input, verifying 
the coding is rather straightforward. The first test case has 
been a 3x3 pins BWR problem with 60 axial nodes. The 
second case has been a 17x17 pins PWR assembly problem. 
Finally, in order to verify the embedded surface case, the 3x3 
BWR problem has been embedded into a larger 2x2 lattice. 
In all the cases a thermal hydraulic distribution has been 
simulated with the internal coupling and compared to the 
standard MCNP input. In both the cases both the fission heat 
deposition and the eigenvalues were absolutely identical. 
 
IV. Coupled calculations with the newly developed 
code system 
 
Each coupled calculation begins with a SUBCHANFLOW 
run, assuming a cosine axial power profile and a flat radial 
pin power distribution. Following the previous work 
performed at KIT [3], the variation of the node averaged fuel 
temperature has been used for monitoring the convergence. 
The following criterion (1) has been imposed on the fuel 
temperature, and has been used as an estimate for the 
convergence. 
 

 

last prev

last

ij ij
ij

ij

T T
T

T



    (1)

 
Here, the indices “i” is the pin number and “j” is the axial 
cell number. The indices run over all pin cells in the problem. 
It should be taken into account that the tallies used to sample 
the power profile distribution have statistical uncertainties 
affecting the fuel temperature. 
 
V. Accelerating the coupled calculation 
 
Running simple consecutive iterations of the 
thermal-hydraulics and neutronics codes will not produce a 
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Close observation of (6) shows that the reference cell is the 
one having the largest flux estimate. In all other cells the 
particles are split in order to obtain the same population as 
that in the reference cell. In those regions where the flux 
score is low, almost all particles entering the cell have 
weights higher than the upper bound of the WW. Therefore, 
they would be divided into number of daughter particles 
with weights modified to fit into the WW. The parameter β 
is the ratio of the upper and lower bounds of the WW. The 
default value of MCNP, β=5, has been used. In practice the 
method involves generating a WW file (WWINP) with a 
MCNP flux tally. The WW mesh should be set to precisely 
overlap the mesh tally. The WW file is updated with each 

coupled iteration. To illustrate the results of this technique 
consider the following plots showing the distribution of the 
relative errors Figure 3,Figure 4. It is evident that applying 
large number of neutron histories has not solved the problem 
of large relative errors and their non-uniform distribution. 
Using flux based WW mesh however has produced a very 
uniform relative error distribution, having similar in 
magnitude values in comparison to the analog calculation. It 
should be noted that UOX and MOX assemblies with 
different enrichments are present in the problem, which 
explains the slightly different values. For performing these 
comparison tests, thermal hydraulic boundary conditions 
from the first coupled iteration have been used. 

 

  

Figure 3: Plot of the relative error distribution for the first axial level. The values shown in the left plot are obtained with 220k 
histories per cycle and no WW. The values in the right plot are generated with WW and 100k histories per criticality cycle. 

 

Figure 4: Plot of the relative errors distribution for the mid plane. The same problem as in Figure 2  
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V. Applying the coupled scheme to a PWR mini-core 
 
Having described the coupled scheme and the convergence 
acceleration strategies, it is possible to proceed further 
describing the computational problem. A PWR 9x9 fuel 
assembly problem has been selected. This large problem was 
chosen with the purpose of demonstrating the capabilities of 
the coupled scheme. Due to this reason, it was chosen to run 
a pin-by-pin calculation. The geometry and the material 
definitions have been derived from the PWR UOX-MOX 
benchmark 8). Variation in comparison to the benchmark 
has been introduced by using only one type of pins. Two 
types of fuel assemblies have been used, MOX with 2.5 wt% 
Pu and fresh UOX with 3.8 wt% U235. Coolant containing 
1500 ppm Boron has been used. The fuel assembly map is 
shown below. 
 
 MOX UOX MOX 
 UOX UOX UOX 
             UOX MOX UOX 

 
This enrichment pattern has been selected to introduce 
more pronounced differences in the assembly power 
distribution. The thermal-hydraulic boundary 
conditions have been identical to those described in the 
benchmark. The total of 104040 individual cells has 
been defined. The fission rate has been tallied in 52020 
volumes. Each assembly has been divided into 20 axial 
nodes. The power profile has been tallied with a mesh 
tally. This input would have been impossible to define 
and compute with the standard capabilities of MCNP. 
The resulting input for the neutronics would have 
consisted of over a million input lines. Using the 
method of internal coupling between the 
thermal-hydraulic and neutronic codes, it has been 
possible to define a very simple input and run the 
problem without any obstacles. The coupled 

calculation has been run on 80 processors and each 
MCNP run took approximately 35 mins. In spite of the 
complicated geometry, uniform convergence behavior 
has been observed. It has been possible to achieve 
convergence ε=0.114%. The convergence parameter 
has been observed to fall below 0.5% after running 7 
coupled iterations. The coupled calculation has been 
run 25 iterations and therefore, it was possible to reach 
values of the convergence parameter significantly 
lower than 1%. This has been done only to test the 
stability. Variations of 0.5% are on the order of 1.5 K in 
absolute value. The criticality eigenvalue has shown 
large inertia towards the change in the 
thermal-hydraulics conditions. Converged in terms of 
the criticality eigenvalue have been considered those 
runs with criticality eigenvalue not oscillating outside 
of the band defined by the eigenvalue statistical 
uncertainty. The eigenvalue convergence was reached 
after running 3 coupled iterations. The first results from 
the coupled calculation to be shown are two 
dimensional plots of the fission rate form the first and 
core mid planes. Note the very low estimate in the first 
node compared to the values from the core middle 
corresponding to cosine- like distribution Figure 5Note 
also the differences in the assembly powers, 
corresponding to the different enrichments.        
 
 
 
 
 
 
 

 

Figure 5: Fission rate distribution for two vertical cuts. 
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