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Existing Monte Carlo burnup codes use various schemes to solve the coupled criticality and burnup equa-
tions. Previous studies have shown that the coupling schemes of the existing Monte Carlo burnup codes
can be numerically unstable. Here we develop the Stochastic Implicit Euler method – a stable and effi-
cient new coupling scheme. The implicit solution is obtained by the stochastic approximation at each
time step. Our test calculations demonstrate that the Stochastic Implicit Euler method can provide an
accurate solution to problems where the methods in the existing Monte Carlo burnup codes fail.
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1. Introduction

A large number of Monte Carlo burnup codes have been devel-
oped over the last decade, linking various Monte Carlo neutron
transport codes to various depletion codes or inbuilt procedures,
e.g. MCB 2 (Cetnar et al., 2000), MOCUP (Moore et al., 1995),
MONTEBURNS 2 (Poston and Trellue, 1999), MCNPX 2.6 (Fensin
et al., 2010), SERPENT (OECD/NEA Data Bank Computer Program
Services, 2010), ALEPH (Haeck and Verboomen, 2006), and many
others. While adding the depletion capability to Monte Carlo neu-
tron transport codes vastly broadens the possible applicability of
Monte Carlo calculations, this has not been fully appreciated in
practice yet. The major reason for this has been the great computa-
tional demands required by the Monte Carlo codes to calculate accu-
rate neutron flux distributions and group cross sections that are
needed for depletion calculations. Thus, the use of Monte Carlo bur-
nup codes has been limited to research and to simple-geometries.
Consequently, the knowledge collected from using the Monte Carlo
burnup codes has been very limited; yet it is generally believed that
Monte Carlo burnup codes give results superior to deterministic
core simulators when given the required computing power. Never-
theless, the continuously decreasing computing power cost starts to
allow the Monte Carlo burnup codes to perform the full-core fuel
cycle calculations, and the weak points of existing Monte Carlo bur-
nup codes are becoming apparent (Dufek and Hoogenboom, 2009;
Dufek et al., 2013).
One of the major problems of the existing Monte Carlo codes
that became apparent recently is their numerical instability, man-
ifesting itself by spatial oscillations of the neutron flux or by
diverging the neutron flux to vastly incorrect spatial distribution
over the subsequent time steps, see Dufek and Hoogenboom
(2009) and Dufek et al. (2013). This instability is not driven by sta-
tistical errors in the computed neutron flux; it is driven by the
feedback between the neutron flux and the nuclide field – nuclides
with large neutron reaction rates, such as the fissile nuclides,
fission products with large neutron cross sections, and burnable
absorbers. In thermal reactors, the strongest feedback can be
attributed to 135Xe; this feedback is natural, and it can lead to
well-known xenon oscillations in thermal nuclear reactors. These
oscillations are, however, normally suppressed actively by the con-
trol system; steady-state conditions are ensured during the normal
operation. The fuel cycle calculations must therefore ensure stea-
dy-state conditions as well; any departure of the neutron flux from
the steady-state will introduce errors in the fuel depletion. This
requirement translates into a constraint imposed on the coupled
system of criticality and burnup equations.

Methods in deterministic nodal simulators have been tuned to
perfection; their stability is achieved by enforcing the steady-state
xenon distribution or by using stable implicit methods for solving
the coupled criticality and burnup equation. Nevertheless, the
gained knowledge has not been reflected into the methods in the
Monte Carlo burnup codes yet. The existing Monte Carlo burnup
codes adopt either the explicit Euler method, or the mid-point
method or other predictor–corrector methods; however, all these
methods are known to be only conditionally stable (Hoffman,
2001). This means the methods are stable only when the target

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.anucene.2013.05.015&domain=pdf
http://dx.doi.org/10.1016/j.anucene.2013.05.015
mailto:jandufek@kth.se
http://dx.doi.org/10.1016/j.anucene.2013.05.015
http://www.sciencedirect.com/science/journal/03064549
http://www.elsevier.com/locate/anucene


296 J. Dufek et al. / Annals of Nuclear Energy 60 (2013) 295–300
time period is discretised into sufficiently small time steps. The
existing Monte Carlo burnup codes may thus become numerically
unstable (Dufek and Hoogenboom, 2009; Dufek et al., 2013) as the
calculations are commonly performed with large time steps.
Enforcing the steady-state xenon distribution could indeed stabi-
lise the Monte Carlo burnup calculations (Isotalo et al., 2013);
however, 135Xe does not represent the only feedback. Other,
especially the fissile nuclides can drive the numerical instability
in burnup calculation with time steps of several weeks or months
(Dufek and Gudowski, 2005). Therefore, in this paper, we choose
the stable implicit Euler method for Monte Carlo burnup calcula-
tions. We attempt to design not only a stable scheme, but also a
scheme that is efficient when applied to Monte Carlo burnup
calculations.

The paper is organised as follows. Section 2 states the governing
equations. Section 3 briefly describes the coupling schemes in the
existing Monte Carlo burnup schemes. In Section 4 we derive the
Stochastic Implicit Euler (SIE) method – the new Monte Carlo
burnup coupling scheme, and suggest the possible ways of imple-
menting the method in Monte Carlo burnup codes. Section 5 shows
results of numerical test calculations demonstrating the numerical
stability of the SIE method. Section 6 summarises our conclusions.

2. Governing equations

The geometry and material properties of the whole reactor can
be described by the nuclide field N(r); the elements of this vector
denote concentrations of various nuclides at the position r. The
fundamental-mode neutron flux /(r,X,E) is then determined by
N(r) and the boundary conditions.

The nuclide field N(r) changes in nuclear reactors during the
operation due to the depletion process driven by the neutron flux
/(r,X,E). Since the neutron flux is determined by the nuclide field,
the fundamental-mode neutron flux changes during the reactor
operation as well. The purpose of fuel cycle calculations is to deter-
mine the changes in N(r, t) and /(s) � /(r,X,E, t) during the whole
fuel cycle.

The above problem can be described by two coupled equations:
the burnup equation that describes the time change of the nuclide
field, and the criticality (eigenvalue) neutron transport equation
that gives the fundamental-mode neutron flux in the core. The bur-
nup equation (Bell and Glasstone, 1970),

dNðr; tÞ
dt

¼Mð/; TÞNðr; tÞ; ð1Þ

is an ordinary differential equation where

Mð/Þ ¼
Z 1

0
/ðr; E; tÞXðTÞ dEþD;

where X is a cross-section and fission yield matrix, D is a decay ma-
trix, and T(r, t) is the temperature at r in time t. Eq. (1) has a formal
solution (Bell and Glasstone, 1970)

Nðr; tÞ ¼ N0ðrÞ exp½Mð/; TÞðt � t0Þ�; ð2Þ

where N0(r) is the nuclide field at time t0. The neutron flux /(r,E, t)
is approximated at time t by the fundamental-mode eigenfunction
of the criticality equation

BðNÞ/ðsÞ � ½LðNÞ � 1
k

FðNÞ�/ðsÞ ¼ 0; ð3Þ

where L(N)/(s) represents the migration and loss of neutrons from
s, and F(N)/(s) accounts for neutron production in s due to fission.

As explained in Section 1, the core conditions are required to be
steady-state at all time steps of the fuel cycle calculations. Even the
natural xenon oscillations that could develop in the cycle calcula-
tions with short time steps of few hours are to be prevented. The
development of natural xenon oscillations in burnup calculations
with short time steps can be prevented by forcing the concentra-
tion of 135Xe to its saturated level; i.e., a level that is naturally
established for t ?1 (with the neutron flux and fission rate fixed).
Nevertheless, the saturated concentration of 135Xe is reached prac-
tically after several days; thus, this additional constrain to the
above system of equations is not necessary when the time steps
are larger than several days. We wish to point out the difference
between the saturated and the steady-state (equilibrium) xenon
concentration. While the equilibrium xenon concentration that is
in steady-state with the neutron flux can be computed only in an
iterative manner (Dufek and Gudowski, 2006), the saturated xenon
concentration can be derived directly from the burnup equation.
Indeed, enforcing the saturated xenon concentration cannot ensure
the steady-state conditions or the numerical stability; the satu-
rated xenon distribution may undergo spatial oscillations over
the subsequent time steps in cycle calculations (of thermal reac-
tors) unless the whole system of equations is solved by a stable
numerical method.

Note that in the following text, the fundamental-mode flux /(s)
that satisfies Eq. (3) with the operator B(N) is denoted as /B(N). In
Section 4.2, /B(N) specifically denotes the fundamental-mode neu-
tron flux that is computed by a Monte Carlo criticality code in a
reactor with the nuclide field N(r).
3. Coupling schemes in existing codes

The existing Monte Carlo burnup codes use various schemes to
couple the burnup and criticality equations. The detail description
of the schemes was given by Dufek and Hoogenboom (2009) and
Dufek et al. (2013), therefore we describe the schemes only briefly
in this section.

The simplest scheme employs the explicit (forward) Euler
method. The codes that use this method (MCB 2, MOCUP, ALEPH
1.1.2, and many others) divide the target time interval into a num-
ber of time steps, and assume the neutron flux at the beginning of
the step to remain constant over the step. The flux is computed at
the beginning of each step, and the fuel is depleted over the whole
step using the beginning-of-step flux.

Other Monte Carlo burnup codes use various predictor–correc-
tor methods. For instance, a large group of codes (e.g. MONTE-
BURNS 2 and MCNPX 2.6) uses the modified midpoint method
(Hoffman, 2001). These codes deplete the fuel over the time step
with the middle-of-step flux. This flux can be obtained after a trial
depletion of the fuel using the beginning-of-step flux. Some codes
can iterate the middle-of-step flux several times by re-depleting
the fuel with the middle-of-step flux obtained in previous iteration
steps.

Some deterministic and Monte Carlo burnup codes (e.g. SER-
PENT 1.1.18) use the linear flux approximation (Yang and Downar,
1990) – another predictor–corrector method. This method depletes
the fuel over the time step with the neutron flux that is taken as an
average of the beginning-of-step and end-of-step fluxes. This is, in
fact, the modified Euler method (Hoffman, 2001). The fuel is first
roughly depleted over the whole step with the beginning-of-step
flux, and an estimate of the end-of-step flux is computed. The aver-
age of the both fluxes is then used to re-deplete the fuel over the
time step. Some codes can recalculate the end-of-step flux, and
iterate the average flux several times.

Few of the existing Monte Carlo burnup codes use other predic-
tor–corrector methods. For instance, MCODE uses a simple predic-
tor–corrector method applied to the nuclide field; this method is
also used in deterministic burnup calculations (Stamm’ler and
Abbate, 1983). The method first depletes the fuel with the begin-
ning-of-step flux over the whole step (this gives the predicted
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end-of-step nuclide field), and calculates the estimate of the end-
of-step flux. Then the fuel is re-depleted with the end-of-step flux
over the whole step (this gives the corrected end-of-step nuclide
field). The final end-of-step nuclide field is taken as the average
of the predicted and corrected end-of-step nuclide fields.

All the above methods are only conditionally stable (Hoffman,
2001); i.e., they are stable when the time steps are sufficiently short.
The strong feedbacks make these methods prone to numerical insta-
bilities (with respect to neutron flux distribution and thus the fuel
depletion) in fuel cycle calculations of critical nuclear reactors, as
shown by Dufek and Hoogenboom (2009) and Dufek et al. (2013).

4. The Stochastic implicit Euler method

4.1. Derivation of the method

We demand the following basic properties from a Monte Carlo
burnup coupling scheme:

� the method must be stable (unconditionally, i.e. with arbitrarily
large time steps),
� the method must provide a simple way to improve the solution

within the time step when this is requested,
� the method must be efficient when implemented in Monte Car-

lo burnup codes.

The simplest method that can satisfy the unconditional stability
property is the implicit Euler method (Hoffman, 2001). Similarly to
all implicit methods, the implicit Euler method uses the future
data that can be obtained only by solving an equation at each time
step. Translated into the context of burnup problems, the implicit
Euler method depletes the fuel over the whole time step with
the end-of-step neutron flux and microscopic cross sections.

Note that / in the following text still represents the neutron flux
/(r,X,E) with the dependences on the position, direction and en-
ergy; therefore, the one-group neutron microscopic cross section
can be derived from / for the purpose of solving the burnup equation
with /. All references to Eq. (2) in this paper thus assume the one-
group neutron microscopic cross section were determined by /.

Now we address the problem of obtaining the end-of-step
flux. Let Ni and /i denote the nuclide field and neutron flux at
the end of ith time step, respectively. When Ni�1 is depleted with
the end-of-step flux /i over the ith time step then Ni equals

Ni ¼ Ni�1 exp½Mð/i; TÞðti � ti�1Þ�; ð4Þ

while /i is given by

/i ¼ /BðNiÞ: ð5Þ

Substituting Ni from Eq. (4) into Eq. (5) forms a non-linear equation
for /i,

/i ¼ /BðNi�1 exp½Mð/i ;TÞðti�ti�1Þ�Þ ð6Þ

For sake of simplicity, let G denote the right-hand side of Eq. (6) as a
function of /i. Then Eq. (6) reduces into the simple form

/i ¼ Gð/iÞ: ð7Þ

In case of Monte Carlo calculation, function G is approximated by a
stochastic function Ĝ that contains an additional noise term e,

bG ¼ Gþ e:

This changes Eq. (7) into

/i ¼ bGð/iÞ; ð8Þ

which is the non-linear stochastic root-finding problem that has
been solved by Dufek and Gudowski (2006).
A similar non-linear equation can be formed for Ni when /i from
Eq. (5) is substituted into Eq. (4), which gives

Ni ¼ Ni�1 exp½Mð/BðNiÞ; TÞðti � ti�1Þ�; ð9Þ

which can be again reduced into a simple form

Ni ¼ HðNiÞ; ð10Þ

where H denotes the right-hand side of Eq. (9) as a function of Ni.
In the following text we complete the derivation of the method

that can solve Eq. (8); however, the same method can be equally
applied to the stochastic version of Eq. (10),

Ni ¼ bHðNiÞ; ð11Þ

as it is demonstrated in Section 4.2.
Non-linear equations may be solved by various numerical

methods; however, not all methods can guarantee convergence.
For instance, the common fixed-point iteration

/ðnþ1Þ
i ¼ bGð/ðnÞi Þ ð12Þ

cannot ensure convergence unless the equation is transformed into
a stable form. Nevertheless, Eq. (8) is too complex for transforming
into a stable form; therefore, a stable method is needed.

Non-linear stochastic root-finding problems are often trans-
formed into a stochastic optimisation problem that aims at finding
a minimum of a stochastic objective function f̂ . To find the solution
/⁄ to Eq. (8), the stochastic objective function f̂ can be designed,
e.g. as

f̂ ð/Þ ¼ j/� bGð/Þj: ð13Þ

The stochastic optimisation problem can be solved most efficiently
by the stochastic approximation method; the stochastic approxima-
tion refers to a class of methods that compute or use an approxima-
tion of the gradient of the objective function. The method solves Eq.
(8) iteratively: given /(1), until convergence repeat

/ðnþ1Þ
i ¼ /ðnÞi � anĝðnÞi ð14Þ

where an > 0 is the step-size, and ĝðnÞi is an estimate of the gradient
of the objective function,

gðnÞi ¼ rf /ðnÞi

� �
: ð15Þ

Robbins and Monro (1951) proved that /(n) ? /⁄ if an > 0,P1
n¼1an ¼ 1, and

P1
n¼1a2

n <1; these properties are satisfied by
the Robbins–Monro algorithm that generates the step-size as

an ¼
a
n

ð16Þ

where a is a positive scalar. Often, algorithms use the reduced step-
size an that is defined as

an ¼
an

a
; ð17Þ

then the Robbins–Monro algorithm reduces into

an ¼
1
n
: ð18Þ

Dufek and Gudowski (2006) showed that the gradient of the objec-
tive function can be approximated by a single Monte Carlo critical-
ity calculation, and that the neutron flux can be then iterated as

/ðnþ1Þ
i ¼ /ðnÞi � andð/ðnÞi � bGð/ðnÞi ÞÞ ð19Þ

where d is positive and smaller than 1. Unless the initial guess is
known to a certain accuracy, we advice to set d = 1 to achieve the
best efficiency; then Eq. (19) can be re-written into a common
relaxation form
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/ðnþ1Þ
i ¼ ð1� anÞ/ðnÞi þ an

bG /ðnÞi

� �
: ð20Þ

We would like to point out that Eq. (20) is equivalent to

/ðnþ1Þ
i ¼ 1

n

Xn

j¼1

bG /ðjÞi

� �
ð21Þ

when the Robbins–Monro algorithm is used to generate the reduced
step-size. This can be proven by the mathematical induction: for
n = 1, both Eqs. (20) and (21) give /ð2Þi ¼ bGð/ð1Þi Þ, and for step n + 1
Eq. (20) can be written as

/ðnþ1Þ
i ¼ 1� 1

n

� �
1

n� 1

Xn�1

j¼1

bG /ðjÞi

� �
þ 1

n
bG /ðnÞi

� �

¼ 1
n

Xn

j¼1

bG /ðjÞi

� �
;

which proves Eq. (21).
Next, we would like to note that Eq. (21) shows that all Monte

Carlo criticality calculations are reflected in the final solution with
equal statistical weight 1/n, which ensures a good efficiency of this
iteration. The statistical errors in the iterated flux are reduced with
each new iteration step.

Finally, we would like to remark that the Robbins–Monro algo-
rithm is suitable for generating the step-size when the sample-size

for estimating G /ðnÞi

� �
(number of simulated neutron histories) is

fixed over all iteration steps. Dufek and Gudowski (2006) showed
that it may be beneficial to vary the sample-size over the iteration
steps; for that case Dufek and Gudowski (2006) derived new algo-
rithms that could be considered here. In this paper, however, we
choose to use a fixed sample-size over all iteration steps, and thus
to employ the Robbins-Monro algorithm.

4.2. Implementation of the method

Here, we describe the possible implementation of the Stochastic
Implicit Euler method that was derived in Section 4.1. As explained
above, an inner iteration is performed at each time step; either the
neutron flux or the nuclide field is relaxed during this iteration.
Therefore two basic implementations are possible; Algorithm 1 de-
scribes the Stochastic Implicit Euler method with relaxation of the
neutron flux, while Algorithm 2 describes the Stochastic Implicit
Euler method with relaxation of the nuclide field.

Note that Algorithms 1 and 2 are purely schematic. The algo-
rithms make use of Eq. (21); however, the relaxed neutron flux or
the nuclide density could equally be described by Eqs. (19) and
(18). Indeed, Monte Carlo burnup codes do not need to remember
results of all inner iteration steps; instead the sum of the nuclide
fields or neutron fluxes can be simply updated at each inner itera-
tion step. Especially Algorithm 1 can be implemented easily as
the calculation of the relaxed neutron flux and group cross sections
can simply combine samples over the inner iteration steps.

Algorithm 2 may be less suitable for implementing in Monte
Carlo burnup codes since the fuel is always depleted with a neu-
tron flux that may have possibly large statistical errors (as the flux
is computed in a single inner iteration step), and it is hard to pre-
dict the effect of very large errors in the flux on the solution of the
depletion equation. The errors in the relaxed nuclide field decrease
only thanks to averaging the nuclide field over the inner iteration
steps. It may also be seen as a disadvantage that the inner iteration
in Algorithm 2 does not naturally combine the neutron fluxes,
since the neutron flux is often a required result from cycle
calculations. Therefore we have included an additional line #12
in Algorithm 2 where the neutron fluxes from the inner steps are
combined at the end of each time step; the combined flux is also
used as the beginning-of-step flux in the next time step.

Algorithm 1. The Stochastic Implicit Euler method with relaxation
of the neutron flux.
1:
 input: N0
2:
 /0  /BðN0Þ

3:
 for i 0, 1, . . . , do

4:
 Nð0Þiþ1  Ni exp½Mð/iÞDt�

5:
 for n 1, 2, . . . , c do

6:
 /ðnÞiþ1  /BðNðn�1Þ

iþ1 Þ
7:
 �/ðnÞiþ1  
Pn

j¼1/ðjÞiþ1=n

8:
 NðnÞiþ1  Ni exp½Mð�/ðnÞiþ1ÞDt�

9:
 end for

10:
 Niþ1  NðcÞiþ1
11:
 /iþ1  �/ðcÞiþ1
12:
 end for
Algorithm 2. The Stochastic Implicit Euler method with relaxation
of the nuclide field.
1:
 input: N0
2:
 /0  /BðN0Þ

3:
 for i 0, 1, . . . , do

4:
 �Nð0Þiþ1  Ni exp½Mð/iÞDt�

5:
 for n 1, 2, . . . , c do

6:
 /ðnÞiþ1  /B �Nðn�1Þ

iþ1ð Þ � �

7:
 NðnÞiþ1  Ni exp½M /ðnÞiþ1 Dt�

8:
 �NðnÞiþ1  

Pn
j¼1NðjÞiþ1=n
9:
 end for

10:
 Niþ1  �NðcÞiþ1
11:
 /iþ1  
Pc

j¼1/ðjÞiþ1=c

12:
 end for
5. Numerical test calculations

5.1. Numerical test model

Numerical tests in this section demonstrate the stability of
Algorithms 1 and 2. For this purpose we use the same fuel cell
model as defined by Dufek et al. (2013). The model represents a
square fuel cell with the following properties:
Fuel
 UO2
Cladding material
 Zr

Moderator
 light water

Radius of fuel pellets
 0.41 cm

Outer radius of cladding
 0.475 cm

Rod pitch
 1.26 cm

Length of the fuel rod
 300 cm

U enrichment in 235U
 3.1 wt.%

Fuel density
 10 g/cm3
Water density
 0.7 g/cm3
Linear power rating
 40 kW/m



Table 1
Relative error e(/i) in the neutron flux in the test of Algorithm 1 (%), computed by
SERPENT.

i Dt (days)

7 14 30 60

1 0.27 0.13 0.36 0.27
2 0.07 0.63 0.28 0.21
3 0.15 0.63 0.47 0.28
4 0.19 0.51 0.55 0.30
5 0.18 0.56 0.28 0.20
6 0.23 1.25 0.28 0.19
7 0.59 0.94 0.12 0.37
8 0.60 0.47 0.56 1.06
9 0.35 0.44 0.22 0.38

10 0.18 0.23 0.21 1.19

Table 2
Relative error e(/i) in the neutron flux in the test of Algorithm 2 (%), computed by
BGCore.

i Dt (days)

7 14 30 60

1 0.52 0.76 0.31 3.50
2 0.46 0.39 0.76 1.45
3 0.34 0.35 0.42 0.41
4 0.39 0.21 0.18 0.37
5 0.23 0.14 0.12 0.24
6 0.78 0.13 0.50 0.39
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Reflective boundary conditions are imposed on all six sides of
the cell; therefore, the cell has no neutron leakage. To allow for
the fuel depletion according to the local neutron flux, the cell is di-
vided into eight equidistant space zones along the fuel rod, and the
fuel material in each zone is defined independently. The codes
were set up to deplete the fuel in each zone independently accord-
ing to the actual neutron flux in the zone.

This model is suitable for studying the numerical stability of
coupling schemes for several reasons. First, the model has a large
dominance ratio, which is a condition at which the numerical
instabilities may develop (when an unstable coupling scheme is
used). Then, the system has no neutron leakage; thus, the correct
steady-state flux (and the fuel burnup) must be uniform along
the fuel rod at any time, which makes this model convenient to
monitor errors in the computed flux. Indeed, no instability could
possibly develop without the definition of independent burnable
materials.

In this model, the relative error in flux / computed by the
Monte Carlo burnup code can be found at any fuel burnup as

eð/Þ ¼
X8

z¼1

h/iz
h/i �

1
8

����
����; ð22Þ

where h/iz is the flux integrated over energy, angle, and zone z, and

h/i ¼
X8

z¼1

h/iz:
7 0.73 0.26 0.24 0.26
8 0.48 0.71 0.24 0.27
9 0.89 0.28 0.47 0.38

10 0.62 0.38 0.48 0.34

Table 3
Relative error e(/i) in the neutron flux in the test of the linear flux approximation (%),
computed by SERPENT.

i Dt (days)

7 14 30 60

1 0.1 0.6 0.7 4.2
2 0.7 0.5 9.8 28.2
3 0.4 0.4 19.3 14.3
4 0.9 1.0 13.3 10.5
5 1.0 2.5 7.9 2.1
6 1.4 3.9 4.2 3.2
7 0.1 6.1 3.1 2.0
8 0.2 9.3 2.1 2.3
9 2.0 8.8 1.3 1.6

10 1.9 6.2 1.0 2.1
5.2. Results

Algorithm 1 was tested by a modified version of the SERPENT 2
code using the ENDFB 7 library, and Algorithm 2 was tested by a
modified version of the BGCore code (Fridman et al., 2008) using
the JEFF3.1 library.

The numerical stability of each algorithm is demonstrated on
four independent burnup calculations with the time step size of
7, 14, 30 and 60 days. Each burnup calculation consisted of 10 time
steps. Each time step performed 11 inner iterations. Each criticality
calculation simulated a batch of 5000 neutrons in 1000 inactive
and 5000 active cycles. Note that about the same number of neu-
tron histories was simulated at each time step in the published test
calculations of the predictor–corrector coupling schemes in exist-
ing Monte Carlo burnup codes (Dufek et al., 2013); the results thus
can be directly compared. The initial fission source was uniformly
distributed in the fuel.

We would like to note that the choice of the optimal number of
the inner iteration steps is not addressed in this paper. In this sec-
tion we only demonstrate the feasibility of stable Monte Carlo bur-
nup calculations, and the rather large number of inner iteration
steps serves this purpose.

Test results of Algorithm 1 are summarised in Table 1. The table
contains the relative errors of the neutron flux /i (line #11 in Algo-
rithm 1) at all burnup calculation. As this flux is directly used in the
fuel depletion its errors thus represent also errors in the fuel
depletion.

Test results of Algorithm 2 are summarised in Table 2. Algo-
rithm 2 applies the relaxation on the nuclide fields; nevertheless,
the neutron fluxes obtained in the inner iteration steps are used
in the depletion process equally. Therefore, for the purpose of eval-
uating the stability we find it reasonable to combine the fluxes
over the inner steps (line #12 in Algorithm 2) and demonstrate
the errors in the average flux here.

Tables 3 and 4 contain corresponding results from published tests
of the predictor–corrector schemes common in the existing Monte
Carlo burnup codes (Dufek et al., 2013). Table 3 provides results of
the linear flux approximation - the default predictor–corrector
method in the SERPENT code. Table 4 gives results of the standard
predictor–corrector method applied on the nuclide field.

For readers’ convenience we also include a graphical demon-
stration of the numerical instability of the standard predictor–cor-
rector coupling scheme here; the previously published Fig. 1
depicts spatial oscillations of the neutron flux in the considered
system during the first four time steps of a depletion calculation
with time steps Dt = 30 day.

The above results demonstrate the good stability of the Sto-
chastic Implicit Euler method. While the existing predictor–correc-
tor schemes suffer from the poor numerical stability, the small
errors in the neutron flux in the test calculations of the Stochastic
Implicit Euler method are mainly of the statistical nature. The two
basic implementations of the Stochastic Implicit Euler method
(Algorithms 1 and 2) show very similar results in our test
calculations.



Table 4
Relative error e(/i) in the neutron flux in the test of the standard predictor–corrector
scheme (%), computed by BGCore.

i Dt (days)

7 14 30 60

1 0.6 0.6 1.0 1.5
2 0.1 0.5 7.9 24.5
3 0.3 1.3 19.8 24.2
4 1.1 1.5 15.9 10.0
5 0.2 2.9 7.8 8.0
6 1.1 5.9 6.0 5.1
7 0.2 10.0 4.5 4.2
8 0.7 8.7 2.8 4.2
9 0.8 7.1 3.3 4.2

10 0.3 5.1 3.3 4.3

Fig. 1. Neutron fluxes in the test of the predictor–corrector method in the SERPENT
code (Dt = 30 day); /i is the neutron flux computed at the beginning of ith time
step, /ðPÞiþ1 is the neutron flux predicted at the end of ith time step, and �/ðCÞi is the
average of /i and /ðPÞiþ1 according to which the fuel is depleted over the ith time step.
Published by Dufek et al. (2013).
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6. Conclusions

We have derived the Stochastic Implicit Euler method - a new
coupling scheme for Monte Carlo burnup calculations, as a solution
to the poor numerical stability of the coupling schemes in existing
Monte Carlo burnup codes.

We have suggested two possible ways of implementing the Sto-
chastic Implicit Euler method, by relaxing either the neutron flux
or the nuclide fields at each time step. We wish to point out that
by relaxing the neutron flux the relaxation is automatically applied
on the nuclide field through the burnup equation; similarly, by
relaxing the nuclide field the relaxation is automatically applied
on the neutron flux through the criticality equation. Simultaneous
explicit relaxation of both the neutron flux and the nuclide field
would slow down the convergence of the inner iteration.
The included numerical tests demonstrate the good stability of
the method; stable burnup calculations are possible even with
large time steps. We still advise to set the time steps as short as
possible in order to simulate accurately the spatial and spectral
changes in the neutron flux in time. The error of the Stochastic Im-
plicit Euler method is proportional to the time step length.

We wish to point out that the purpose of this paper was to de-
rive and demonstrate a stable coupling scheme for Monte Carlo
burnup calculations. Specific optimisations of this scheme, such
as the choice of the time step length, the number of inner itera-
tions, the number of neutron histories simulated at each Monte
Carlo criticality calculation, and the number of inactive and active
source cycles, were not addressed in this paper. Therefore, the
number of inner iteration steps was fixed in the test calculations;
however, the inner iteration can in principle continue until a spe-
cific convergence criterion is satisfied.

The future studies may consider higher-order stable methods
combined with the stochastic approximation for obtaining the im-
plicit solution at each time step. Possible improvement may also be
achieved by altering the Robbins–Monro algorithm for algorithms
that control both step-size and sample-size.
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