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Existing Monte Carlo burnup codes suffer from instabilities caused by spatial xenon oscillations. These
oscillations can be prevented by forcing equilibrium between the neutron flux and saturated xenon
distribution. The equilibrium calculation can be integrated to Monte Carlo neutronics, which provides
a simple and lightweight solution that can be used with any of the existing burnup calculation algo-
rithms. The stabilizing effect of this approach, as well as its limitations are demonstrated using the reac-
tor physics code Serpent.
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1. Introduction

Monte Carlo burnup calculations have typically focused on two
dimensional pin cell geometries, assembly segments and other
geometries with relatively small dimensions. As computers and
algorithms develop, calculations involving research reactors, full
3D assemblies and even simplified models of power reactors are
becoming increasingly common. While most modeled geometries
have been, and still are, too small or too crudely discretized for
spatial oscillations to occur, applications are increasingly
approaching the point where this in no longer the case.

Several widely used burnup calculation algorithms have been
found to be unstable, at least in long symmetric pin cell geometries
(Dufek and Hoogenboom, 2009; Dufek et al., 2013), which is
sufficient to show that they cannot handle the general case. These
oscillations are driven by xenon, although due to time discretiza-
tion the mechanisms differ from physical xenon oscillations. Since
all existing methods seem to be affected, this effectively prevents
expanding Monte Carlo burnup calculations to large and detailed
geometries.

Xenon oscillations can also occur in real reactors, or could, if
they were not prevented by active control. Due to various approx-
imations oscillations in numerical calculations can be much worse
than they would in real reactors, but despite this, explicitly model-
ing the control system should help. Such solution would, however,
be extremely laborious, if at all feasible in the context of Monte
Carlo neutronics, and thus a simpler alternative is required.

In deterministic codes, spatial oscillations involving various
quantities are dealt with by forcing equilibrium at each time step.
This is done via wrapper algorithms that use multiple neutronics
solutions to find the equilibrium distributions and the correspond-
ing flux, which is then used for depletion. This approach has also
been used in Monte Carlo burnup calculations (Dufek and Gudow-
ski, 2006). However, with Monte Carlo neutronics it is also possible
to efficiently calculate equilibrium xenon distributions inside the
criticality source simulation (Griesheimer, 2010).

In this paper we suggest utilizing such inline equilibrium xenon
calculations for stabilizing Monte Carlo burnup calculations. This
provides a lightweight approach that can be used with any burnup
calculation algorithm. The inherent instability of computational
models used in Monte Carlo burnup calculations and the stabiliz-
ing effect of the equilibrium xenon treatment are demonstrated.
2. Theory

2.1. Xenon oscillations

135Xe has a very large thermal absorption cross-section and a
high cumulative fission yield giving it a profound effect on neu-
tronics. The combined direct yield of 135Xe (T1/2 � 9.2 h) and
135mXe (T1/2 � 15 min) from thermal fissions is only around 0.2%,
while its precursors 135Sb, 135Te and 135I have a combined yield
of 6%. 135Sb and 135Te decay to 135I in seconds, but 135I has a
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half-life of 6.6 h. Because of this, changes in the flux affect xenon
production rate with a delay, whereas removal rate, which is dom-
inated by absorption, changes instantly.

If the flux is tilted, the immediate effect is that in the areas of
high flux reactivity starts to increase as xenon is depleted and in
the areas of low flux reactivity decreases as xenon builds up. These
changes in reactivity reinforce the flux tilt, which in turn leads to
even larger changes in reactivity. Over time 135I concentrations sta-
bilize and the xenon concentration in high flux areas starts to in-
crease while that in the low flux decreases, eventually tilting the
flux the opposite way and the cycle repeats.

Burnup calculations aiming to follow long term development
use step lengths much longer than the timescale involved in phys-
ical xenon oscillations. Due to long steps 135I and 135Xe concentra-
tions have time to reach saturation levels corresponding to the
used flux at each step, making the physical xenon oscillation mech-
anism impossible. Instead, if the flux is tilted, the areas with high
flux will get high xenon concentration during the following deple-
tion step and the other way around. This in turn means that in the
next neutronics solution the flux will tilt the other way, leading to
an unphysical oscillation.

2.2. Equilibrium xenon calculation

All xenon driven oscillations are prevented if the xenon concen-
trations and neutron flux are forced to remain in equilibrium.
Griesheimer (2010) has presented an algorithm that allows the
equilibrium to be calculated inside a Monte Carlo criticality source
simulation, providing a massive reduction in running time when
compared to traditional wrapper algorithms. Another integrated
equilibrium calculation algorithm based on the same principle
can be found in the reactor physics code Serpent.1 While both algo-
rithms were designed for other purposes, they can also be used for
removing oscillations in burnup calculations simply by applying
them to all neutronics solutions. Since only the neutronics is af-
fected, this can be done with any burnup calculation algorithm.

The equilibrium calculation in Serpent is performed during a
criticality source simulation by recalculating the concentrations
of 135I and 135Xe after each source cycle using the flux and cross-
sections tallied during that cycle. This is done separately for each
fissile material region. The new concentrations are then used dur-
ing the next source cycle and so on. The result is a continuous iter-
ation between neutronics and the equilibrium concentration of 135I
and 135Xe, performed as the transport simulation is run. This
means that the concentrations of these two nuclides change
through all inactive and active cycles.

The concentrations of 135I and 135Xe are calculated by assuming
that 135Xe and its precursors are in a secular equilibrium with the
actinides, and that the neutron capture rates of the precursors of
135Xe are insignificant compared to radioactive decay. With these
approximations, the concentrations become:

nI ¼
cIRfU

kI
ð1Þ

and

nX ¼
cXRfU

kX þ rXU
; ð2Þ

where nI and nX are the concentrations of 135I and 135Xe, respec-
tively, cI and cX (which includes cI) their cumulative fission yields,
kI and kX their decay constants, Rf is the macroscopic total fission
cross-section of the material, rX the microscopic capture cross-sec-
tion of 135Xe, and U the total flux.
1 For a complete and up-to-date description of the Serpent code, see http:/
montecarlo.vtt.fi.

2 Equilibrium xenon calculation was added to Serpent 2 in version 2.1.10. There are
no other changes that affect the results.
/

All results, including the cross-sections and flux used in deple-
tion calculations, are tallied as before over all active cycles. The
concentrations of 135I and 135Xe are collected by averaging over
the iterated concentrations from all cycles. The concentrations of
all other nuclides, including the daughters of 135I and 135Xe still
come from depletion calculations.

The fission yields used in the equations are fission rate
weighted averages of the values for each actinide. The data is typ-
ically provided for three incident neutron energies: 0.0253 eV,
400 keV and 14.0 MeV. Even though the energy dependence is ta-
ken into account in Serpent burnup calculations, the equilibrium
xenon model always uses the data corresponding to the lowest
energy.

While the algorithm has produced good results, its correctness
and possible improvements remains a topic of future study: There
has been no theoretical analysis on its validity, and the estimate of
Eq. (2) for 135Xe concentrations is known to be biased (Grieshei-
mer, 2010). Because the updates in the algorithm of Serpent uses
only one source cycle worth of statistics, the bias might become
an issue in some cases despite being insignificant in the algorithm
of Griesheimer (2010).
3. Numerical test calculations

The base case for all tests is a single PWR pin cell identical to the
one used by Dufek and Hoogenboom (2009). Fuel pin diameter is
0.82 cm, cladding outer diameter 0.95 cm and there is no gas
gap. Lattice pitch is 1.26 cm. The cell is 4 m long and divided into
eight 50 cm long axial segments. The segments are numbered 1–
8 starting from one end. Reflective boundary conditions are used
at all boundaries, including the vertical direction. The cladding is
pure zirconium at 600 K and the coolant light water with density
of 0.7 g/cm3 at 600 K. Fuel density is 10 g/cm3, temperature
900 K and their average enrichment 3.1 wt.%. To break the symme-
try, this base case is varied by increasing enrichment in segments
1–4, and lowering it in segments 5–8. The enrichments are selected
so that the average remains at 3.1 wt.%. For example, with 0.4 pp
(percentage points) difference the enrichments are 3.3 wt.% and
2.9 wt.%. Mean linear power is kept constant at 16 kW/m.

Burnup calculations consisting of 480 steps of 15 min, 40 steps
of 3 h, 20 steps of 6 h, 10 steps of 12 h or 10 steps of 1, 2, 4, 8, 16,
30, 60 or 120 d were performed with enrichment differences of 0,
0.1, 0.4, 0.8, and 1.6 pp using the default CE/LI predictor–corrector
burnup algorithm (Isotalo and Aarnio, 2011a) of Serpent. The cal-
culations with 15 min steps used version 2.1.9 of Serpent with
1000 inactive and 5000 active cycles of 1000 neutrons, while all
other calculations used version 2.1.10 with 1000 inactive and
5000 active cycles of 5000 neutrons.2 All calculations used the same
JEFF 3.1.1 based nuclear data libraries, and were repeated five times
with different random number sequences to get an idea of the mag-
nitude of statistical variation.

Additional test calculations, and their results, are described in
Sections 3.3 and 3.4. Section 3.5 describes the differences, or lack
of, in results obtained with other burnup algorithms.
3.1. Short steps without equilibrium xenon

Step lengths under 1 d are well below those typically used in
burnup calculations. These calculations were done to demonstrate
that it is impossible, not just unpractical, to avoid the oscillations
simply by reducing step lengths and thus to show that a stabilizing
scheme is really required. Since reducing step lengths should only
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Fig. 1. Flux in segment 1 with 0 and 0.1 pp enrichment differences and 15 min steps without equilibrium xenon.
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improve accuracy, the results from these calculations should also
be the most accurate.

Fig. 1 shows the flux obtained for segment 1 with 0 and 0.1 pp
enrichment differences and 15 min steps without equilibrium xe-
non in four runs with different random number sequences. In both
cases, segments 2–4 show similar oscillations with decreasing
amplitude towards the center of the rod, while segments 8–5 have
identical results as segments 1–4, but with opposite phases. The
only notable differences between these enrichment differences
and results with different random number sequences are the
phases of the oscillations.

Segment 1 fluxes for enrichment differences of 0.1, 0.4, 0.8 and
1.6 pp without equilibrium xenon are shown in Fig. 2, which also
shows the xenon concentrations. With 0.8 and 1.6 pp differences
the oscillations are dramatically smaller than with smaller differ-
ences, although with 0.8 pp difference the amplitude is growing
steadily, which might lead to similar oscillation as with the smaller
enrichment differences. Spatial distributions with 0.4 and 0.8 pp
differences are shown in Fig. 3. With 0.4 pp and lower enrichment
differences the flux oscillates between the ends of the rod, whereas
with 0.8 pp and 1.6 pp (not shown) differences the oscillations are
much smaller and happen between the higher enriched end and
the middle of the rod.

These oscillations follow the physical mechanism, which has a
timescale of hours. Because of this, very short steps are required
to reproduce this behavior. Results obtained with 3 h steps are in
a fairly good agreement with those obtained with 15 min steps
(Fig. 1), but with 6 and 12 h steps the crude time discretization al-
ready causes large distortions, although the flux still oscillates in
similar manner as with shorter steps. 24 h steps are simply too
long to support the physical oscillations, and there is a transition
to numerical mechanisms.
3 The results collected from burnup calculations are typically the corrected atomic
densities and the flux calculated with these compositions during the following
predictor. In the CE/LI algorithm used here, the corrected material densities are
calculated using the mean of the predictor and corrector fluxes.
3.2. Effects of equilibrium xenon

With multi-day steps more typical in burnup calculations the
physical xenon oscillation mechanism is replaced with a numerical
one as explained in Section 2.1. However, with enrichment differ-
ence of 0.8 pp and 1–4 d steps, or enrichment difference of 1.6 pp
and 1–8 d steps, the calculations appear to be stable even without
equilibrium xenon and the results obtained with and without it are
very similar. The only significant exceptions are the initial distribu-
tions in each case, where large differences arise due to equilibrium
xenon being applied despite zero burnup.

With longer steps or smaller enrichment difference the calcula-
tions without equilibrium xenon start to oscillate, but these oscil-
lations happen between subsequent neutronics solutions, i.e., the
predictor and corrector, rather than between subsequent steps.
Thus the flux is tilted one way during each predictor step, and
the other way during each corrector step. As an example, Fig. 4
shows the predictor and corrector fluxes with 0.4 pp enrichment
difference after two 16 d steps. These distributions remain very
similar through the calculation and with different random number
sequences. Oscillations again happen in the same phase in all re-
peats of the asymmetric cases.

Table 1 lists the average difference between local predictor and
corrector fluxes with various enrichment differences and step
lengths with and without equilibrium xenon. Varying differences
between the predictor and corrector values are a normal part of
predictor–corrector methods. While differences as large as the
mean flux are a clear sign that the calculation has gone haywire,
defining a threshold value for how large a difference indicates
instability is difficult, especially as the transition from stable to
oscillating behavior is probably continuous.

The oscillation between predictor and corrector leads to results3

that look relatively stable, but are not even self-consistent. Fig. 5
shows the flux and 235U concentrations calculated with 0.4 pp
enrichment difference and 16 d steps. An example of the predictor
and corrector fluxes in this case was given in Fig. 4. These results
claim that uranium is depleted in segment 8 just as fast as in seg-
ment 1 despite segment 1 having over 20 times higher flux and high-
er enrichment. The discrepancy between segments 5 and 8 is also
very clear: both have the same enrichment and segment 5 has 9
times higher flux, yet more uranium is depleted in segment 8. Sim-
ply outputting the average flux that is used for depletion instead of
the predictor flux would not solve this problem as neither the aver-
age flux, nor the compositions calculated with it, are correct. This is
apparent, for example, from the fact that more uranium should be
depleted in segments 1 and 5 than in segment 8, yet this is not
the case.

With step lengths below 60 d, equilibrium xenon removes these
oscillations and the resulting discrepancies. As an example, Fig. 6
shows the results for 235U concentration and flux with 0.4 pp
enrichment difference and 16 d steps when equilibrium xenon is
used. The same case, without equilibrium xenon, was presented
in Fig. 5.

However, with 60 and 120 d, oscillation between predictor and
corrector happens even with equilibrium xenon as seen from the
large difference between their fluxes in Table 1. With 60 d steps
the differences are limited to the early part of the calculation and
disappear by the fifth step. While this looks like a start-up effect,
changing the step lengths of the first four steps to 4, 8, 16 and
30 d only moved the start of the instability back to the first 60 d
step. With 120 d steps the difference remains large through the en-
tire calculation.



Fig. 2. Flux and 135Xe concentration in segment 1 with various enrichment differences and 15 min steps without equilibrium xenon.

Fig. 3. Flux and 135Xe distributions with 0.4 and 0.8 pp enrichment differences, 15 min steps and no equilibrium xenon at times corresponding to the extremes of the
oscillations. The data points are the tallied averages for each segment.

Fig. 4. Predictor and corrector fluxes with 0.4% enrichment after two 16 d step, as
well as the average, which is used for depletion on the corrector.

Table 1
Average difference between local predictor and corrector fluxes as a fraction of the
global mean flux with various enrichment differences and step lengths.

1 d 2 d 4 d 8 d 16 d 30 d 60 d 120 d

Without equilibrium xenon
0.0 pp 0.124 0.493 0.746 0.938 1.194 1.319 1.429 1.529
0.1 pp 0.180 1.000 1.112 1.156 1.239 1.335 1.431 1.529
0.4 pp 0.117 0.812 1.142 1.198 1.237 1.319 1.438 1.540
0.8 pp 0.022 0.032 0.062 0.492 0.990 1.219 1.390 1.524
1.6 pp 0.013 0.014 0.017 0.024 0.416 0.990 1.300 1.419

With equilibrium xenon
0.0 pp 0.022 0.022 0.021 0.022 0.025 0.025 0.047 0.515
0.1 pp 0.021 0.021 0.021 0.020 0.023 0.029 0.065 0.827
0.4 pp 0.019 0.017 0.019 0.021 0.023 0.041 0.132 0.837
0.8 pp 0.013 0.014 0.014 0.017 0.023 0.048 0.158 0.825
1.6 pp 0.010 0.010 0.010 0.012 0.017 0.043 0.130 0.828
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3.3. Accuracy of the equilibrium algorithm of Serpent

The symmetric case with no enrichment difference is special
since the symmetry presents an alternate way to stabilize the cal-
culation. This was utilized by performing reference calculations
where the rod had only a single 4 m long depletion zone making
it essentially two-dimensional, and thus stable without the use
of equilibrium xenon. These calculations were otherwise identical
to those presented in the previous section.4 The mean flux and
135Xe concentrations from these 2D calculations were used as refer-
ence values and compared to the results obtained with eight seg-
ments and equilibrium xenon. To test the role of the bias in the
xenon concentration estimate (Eq. 2), part of the equilibrium xenon
calculations were also repeated using different numbers of neutrons
per source cycle while keeping the total number of neutrons per
solution unchanged.

Table 2 shows the mean, l, and standard deviation, r, of relative
differences between these reference values and corresponding
equilibrium xenon calculations with eight depletion zones and
2 d and 30 d step lengths. The values are calculated over all seg-
ments, repeats and steps starting after the third one as:

l ¼ 1
Ns � ðNt � 2Þ � Nr

XNs

s¼1

XNt

t¼3

XNr

r¼1

/s;t;r � �/t

�/t
ð3Þ

and
4 There was a bug in the library routines of Serpent causing relative error of
4 � 10�3 in xenon concentration when equilibrium xenon is not used, and compa-
rable errors in some other fission products regardless of the equilibrium calculation.
The results presented in this section were recalculated after the bug was discovered
and fixed, but those in other sections were not as the errors are too small to affect
stability.



Fig. 5. The output flux and 235U concentrations with 0.4 pp enrichment difference and 16 d steps.

Fig. 6. Flux and 235U concentrations with 0.4 pp enrichment difference and 16 d steps when equilibrium xenon calculation is used.
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r ¼ 1
Ns � ðNt � 2Þ � Nr � 1

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNs

s¼1

XNt

t¼3

XNr

r¼1

/s;t;r � �/t

�/t
� l

� �2
s

; ð4Þ

where /s,t,r is the flux obtained for segment s at time step t in repeat
r of the calculation with the eight segments and equilibrium xenon,
whereas �/t is the mean flux obtained in the 2D calculations for step
t. Ns = 8, Nt = 10 and Nr = 5 are the numbers of segments, steps and
repeats with different random number sequences, respectively. The
mean and standard deviation of 135Xe were calculated similarly. The
first steps are not included as it takes a few days for the xenon con-
centration to saturate in the reference calculations. After saturation
there were no major time trends in the differences.

The differences in xenon concentration are comparable to, or
smaller than, the standard deviation but there is a clear trend with
the equilibrium calculation underestimating the concentration
with poor statistics and, to a lesser extent, overestimating it with
good ones. Differences in the flux reflect those in the xenon con-
centrations. The relatively large standard deviation in the flux
Table 2
Mean and standard deviation (in parentheses) of relative differences in neutron flux and
calculations in the symmetric case when using different number of neutrons per source
histories per solution at 25 million, except in the last case, where 250 million histories we

Cycle 2 day steps

size Xe Flux

500 �3.9 � 10�2(2.1 � 10�2) 2.4 � 10�3(2.2 � 10�2

1000 �1.5 � 10�2(1.0 � 10�2) 1.3 � 10�3(1.9 � 10�2

1500 �8.4 � 10�3(7.9 � 10�3) 9.7 � 10�4(1.9 � 10�2

2000 �5.3 � 10�3(7.7 � 10�3) 8.0 � 10�4(2.1 � 10�2

3000 �2.1 � 10�3(7.0 � 10�3) 5.8 � 10�4(2.1 � 10�2

4000 �7.5 � 10�4(6.6 � 10�3) 4.9 � 10�4(2.1 � 10�2

5000 2.9 � 10�4(5.3 � 10�3) 4.5 � 10�4(1.7 � 10�2

50,000 3.4 � 10�3(1.9 � 10�3) 2.7 � 10�4(6.3 � 10�3
appears to be of a purely statistical origin as it does not depend
on the cycle size.

The underestimations of the xenon concentrations at smaller
cycle sizes are caused by the bias, while the differences remaining
with 50,000 neutrons per cycle result from the use of thermal
yields for all fissions and discretization error (Isotalo and Aarnio,
2011b) in the reference calculations. More accurate results may
be obtained with intermediate statistics when these errors cancel
each other.
3.4. Running times and performance

In the tests of this work, the equilibrium xenon method in-
creased the running times per neutron history by an average of
10%. This value is, however, suggestive at best as the slowdown de-
pends on the geometry and various neutronics parameters as well
as the implementations of the neutronics and equilibrium algo-
rithms. Another factor affecting the performance, as measured by
the ratio of variance and running time, is that when equilibrium
xenon is used, the constant iteration of xenon concentrations gives
xenon concentrations between equilibrium xenon calculations and the 2D reference
cycle. The number of source cycles was adjusted to keep the total number of active
re used per step.

30 day steps

Xe Flux

) �4.9 � 10�2(2.6 � 10�2) 2.6 � 10�3(2.4 � 10�2)
) �1.9 � 10�2(1.3 � 10�2) 1.3 � 10�3(2.4 � 10�2)
) �1.1 � 10�2(1.0 � 10�2) 9.1 � 10�4(2.3 � 10�2)
) �6.5 � 10�3(8.4 � 10�3) 7.0 � 10�4(2.2 � 10�2)
) �2.7 � 10�3(8.4 � 10�3) 5.5 � 10�4(2.4 � 10�2)
) �1.0 � 10�3(7.8 � 10�3) 4.3 � 10�4(2.3 � 10�2)
) �1.6 � 10�5(7.7 � 10�3) 9.3 � 10�5(2.4 � 10�2)
) 4.0 � 10�3(2.1 � 10�3) 1.4 � 10�4(6.9 � 10�3)



Table 3
Average standard deviations of segment-wise fluxes and their 95% confidence
intervals (assuming normality) with and without equilibrium xenon for various
initial enrichment differences and burnup of 0 and 9.1 MW d per kilogram of initial
heavy metal. The values are percentage of mean global flux.

Equilibrium xenon Fresh fuel Depleted fuel

0.0 pp
No 5.11 (4.94 5.30) 5.67 (5.48 5.87)
Yes 1.66 (1.61 1.72) 2.30 (2.22 2.38)

0.1 pp
No 3.71 (3.59 3.84) 2.00 (1.93 2.07)
Yes 1.80 (1.74 1.87) 1.80 (1.74 1.86)

0.4 pp
No 2.90 (2.80 3.00) 1.95 (1.89 2.02)
Yes 1.48 (1.43 1.53) 1.53 (1.48 1.59)

0.8 pp
No 1.08 (1.04 1.12) 2.01 (1.94 2.08)
Yes 1.08 (1.05 1.12) 1.76 (1.70 1.82)

1.6 pp
No 0.91 (0.88 0.94) 1.62 (1.57 1.68)
Yes 0.79 (0.77 0.82) 1.44 (1.39 1.49)

A.E. Isotalo et al. / Annals of Nuclear Energy 60 (2013) 78–85 83
the flux a negative feedback inside the transport calculation. This
improves the otherwise poor convergence in geometries with high
dominance ratio.

To quantify the effect on statistics, an additional series of stand-
alone neutronics calculations without burnup was performed.
These calculations used fresh fuel and fuel that has been depleted
for 300 d resulting in mean burnup of 9.1 MW d per kilogram of
initial heavy metal. Compositions of depleted fuel were taken from
the equilibrium xenon burnup calculations. In each case the flux
was solved 200 times with and without equilibrium xenon. In
the calculations which did not use the equilibrium method, equi-
librium amounts of xenon were added to the fixed material com-
positions. The results from these calculations are shown in
Table 3. In the symmetric case statistical variation in the flux
was reduced by two thirds, and large reductions are also seen with
0.1 and 0.4 pp differences.

While the above tests disregarded burnup to allow comparable
results to be obtained without equilibrium xenon, neutronics solu-
tions in burnup calculations are affected in the same way. Reduced
variation compensates for the increased running time per history,
meaning that performance can be as good or even better as with-
out equilibrium xenon. The comparison is only strictly applicable
to independent neutronics solutions. In the tested geometries, bur-
nup calculations without equilibrium xenon produce incorrect, and
completely different, results which might have different variances.

3.5. Other methods

All calculations with step length of 1 d or more, except the 2D
ones presented in Section 3.3 were repeated using each of the four
other burnup algorithms available in Serpent 2, namely CE, LE, LE/
LI and LE/QI (Isotalo and Aarnio, 2011a).5 Results obtained with
these methods were qualitatively similar to those presented in Sec-
tion 3.2 for CE/LI, and are thus not presented in detail.

Without equilibrium xenon higher order predictor–corrector
methods generally experienced slightly stronger oscillations, but
behaved otherwise identically. Since CE and LE do not use a correc-
tor, the flux starts to oscillate between steps rather than between
5 CE and LE are single stage methods where cross-sections and flux for each step
are set to the average of constant and linear extrapolations, respectively. LE/LI and LE/
QI are predictor–corrector methods which follow the LE predictor step with corrector
that uses linear or quadratic interpolation.
the predictor and corrector. This leads to a behavior that is very dif-
ferent from the predictor–corrector methods, but the difference is
not particularly significant since both modes of oscillation lead to
unusable results.

With equilibrium xenon the only significant difference is that LE
starts to oscillate with 30 d steps while all the other methods start
at 60 d steps like CE/LI. For LE and CE the oscillations again happen
between steps.

The tests were also repeated with CE/LI using equilibrium xe-
non and nine substeps (Isotalo and Aarnio, 2011b) on the corrector.
Stability-wise the results were identical to those obtained without
substeps.
4. Discussion

4.1. Instability of the models

The results obtained with 15 min steps for enrichment differ-
ences of 0–0.4 pp show a textbook example of physical xenon
oscillations with period of about 38 h or 150 step lengths. Such
clean oscillations cannot be caused by numerical instability alone.
Instead, it appears that when starting from a non-equilibrium state
rapidly growing oscillations are the correct solution to the model.
With enrichment differences of 0.8 and 1.6 pp oscillations are still
present but they are small and happen between the ends of the
higher enriched part.

In the tests with non-zero enrichment difference flux and xenon
concentrations are out of equilibrium to begin with, so the ob-
tained oscillating solutions are correct for the simulation model.
The correct solution with no enrichment difference has to be sym-
metric because there is no axial dependency in the initial state.
However, as statistical variation breaks the symmetry, oscillations
are unavoidable when using Monte Carlo neutronics. This differ-
ence in the origin of the oscillations explains the differences in
their phases seen in Fig. 1. With no enrichment difference the oscil-
lations are initiated by statistical variation and hence have random
phases, whereas in the asymmetric case the oscillations have noth-
ing to do with statistics. However, even in the symmetric case one
can obtain the correct solution by utilizing the symmetry to per-
form a 2D calculation instead.

It is important to note that while the step lengths of 15 min (or
3 h) could be used to intentionally simulate physical xenon oscilla-
tions, this is not the case here. The model being solved is exactly
the same that was used with longer steps; a model which, while
simple, is like those used in typical burnup calculations that aim
to simulate the development of the steady state. In the asymmetric
cases, the model that was supposed to model steady state just
turns out to describe physical xenon oscillations instead.

Thus the root of the xenon oscillations encountered with long
steps is not in the burnup algorithms: They can handle the compu-
tational model for each of the tested cases when used correctly, i.e.,
with short enough steps. The real problem is that due to omitting
feedback and control mechanisms, the simplified computational
models do not actually describe the secular equilibrium we want
to simulate. When trying to perform a calculation using incorrect
model and step lengths longer than the period of oscillations in
its solution, it is not surprising that results are unsatisfactory. As
with 15 min steps, the oscillation mechanism in asymmetric cases
is deterministic, and simply improving the statistics wont’t remove
the oscillations.

Since the numerical xenon oscillation mechanism encountered
with step lengths typical for burnup calculations is different from
the physical one, it has different stability properties and hence
some burnup algorithm could, in principle, produce stable behav-
ior despite the correct solution being oscillatory. This even seems
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to be the case in the results obtained with 0.8 pp enrichment dif-
ference, where 1–4 d steps produced more stable results than
15 min steps. However, this seems situational at best as none of
the methods tested in this or earlier works generates stable results
with any generality.

4.2. Burnup calculations with equilibrium xenon

None of the above changes the fact that we still want to obtain
‘stable solutions’ with simplified computation models. Perhaps the
simplest way to achieve this is to directly require that the flux and
xenon concentrations must remain in a mutual equilibrium. It
should be noted that doing so does not actually produce a stable
solution to the original model, but changes the model to include
an additional constraint that prevents oscillations. In the tests of
this work using equilibrium xenon with step lengths up to 30 d re-
moved all oscillations leaving no clear discrepancies apart from the
non-zero xenon concentrations in fresh fuel and the resulting
changes in neutronics. The method is also problem independent
and does not require any additional input or details in the model.

In those cases where comparable results could be obtained
without equilibrium xenon, agreement between them and the
equilibrium algorithm of Serpent was good as long as the number
of neutrons per source cycle was sufficient. The algorithm also im-
proved the convergence of the neutronics solution, but when the
neutron batch size is set too low, results deteriorate due to the bias
in the xenon estimate.

It is important to understand that this bias depends on the
number of neutrons in a single source cycle, not the total number
of neutron histories per step like all other statistical phenomena.
Each xenon concentration update in the equilibrium calculation
uses statistics from only a single source cycle, and the probability
of the flux, and hence xenon concentration, being severely under-
estimated during given cycle increases rapidly as the number of
neutrons per cycle becomes small. Normalization ensures that
when the flux in one part of the geometry is underestimated, it
must be overestimated equally much somewhere else, but because
the dependence of the xenon concentration on the flux is not lin-
ear, large overestimations of flux do not increase the xenon con-
centration as much as equally large underestimations decrease it.
Thus the average xenon concentration is always underestimated,
resulting in a bias.

Only large statistical variations lead to significant bias as the
dependence of xenon on flux, just like any other smooth function,
is essentially linear in respect to small variations. Thus the bias can
be avoided by making the neutron generation size sufficiently
large. The number of source cycles can be made correspondingly
smaller so that overall statistical accuracy and the running time re-
quired for active cycles remain unaffected. Unfortunately there is
no straightforward way to estimate how large cycles are required
in a given case without performing test calculations. It should be
possible to eliminate the bias by updating the xenon concentra-
tions based on the unbiased estimator of Dumonteil and Diop
(2011). This and other possible improvements to the algorithm
are a topic for further study.

The stabilizing effect of the equilibrium xenon treatment is not
dependent on which algorithm is used for calculating the equilib-
rium, and for example the algorithm of Griesheimer (2010), which
is not susceptible to bias or doubts about correctness, could be
used instead of the algorithm of Serpent. Any reasonable inte-
grated algorithm should have comparably low effect on running
times, but the effect on convergence may vary greatly. Whichever
algorithm is used, it should be kept in mind that while enforcing
equilibrium allows stable solutions to be obtained for simplified
models, the results are only as accurate as the model they have
been calculated for. Forcing equilibrium without modeling the
feedback and control systems that would stabilize a real reactor
means that their effects on the equilibrium distributions are
ignored.

4.3. Other nuclides

Even with equilibrium xenon, strong oscillations were observed
when using too long steps. As without equilibrium xenon, the
oscillations in different repeats of the asymmetric cases always
happen in the same phase indicating that they are triggered by
the asymmetry of the geometry, not statistical variation. The
mechanisms are similar to the numerical xenon oscillations with
negative reactivity associated with increased local burnup replac-
ing that from the buildup of xenon. The step length limit at which
these oscillations start is likely to be affected by the geometry,
material compositions and power density as well as the choice of
burnup algorithm. The equilibrium xenon method only affects xe-
non, and while it would be possible, in principle, to apply a similar
equilibrium treatment for other short-lived nuclides, this is not
possible for the long-lived ones.

Since oscillations can occur despite equilibrium xenon, results
still need to be checked for signs of instability and step lengths ad-
justed as needed. With predictor–corrector methods comparing
the results from subsequent steps is not sufficient as oscillations
can happen between the predictor and corrector. These oscillations
can be detected by comparing the local predictor and corrector
fluxes, which could easily be automated to generate a warning
for differences larger than some predefined threshold. Unfortu-
nately universal or exact threshold cannot be established since
varying differences between the predictor and corrector values
are a normal part of the methods.

5. Conclusions

Existing Monte Carlo burnup codes suffer from xenon driven
spatial oscillations in large geometries. Since the accurate solutions
to the simulation models for many of these geometries oscillate,
simply reducing step lengths, or solving the model better, would
not work in a general case. When using predictor–corrector meth-
ods these oscillations may be difficult to detect as they can happen
between the predictor and corrector, instead of subsequent steps,
which makes the usually collected results look stable.

Forcing xenon and flux to mutual equilibrium offers a simple
solution to these oscillations. Since the equilibrium calculation
can be integrated to normal Monte Carlo neutronics, it has only a
minor effect on running times and can be used with any burnup
calculation algorithm.

Oscillations driven by fuel burnup still arise if too long steps are
used, but unlike xenon oscillations, these only occur with long
steps, allowing calculations to be performed with reasonable step
lengths. This is a major improvement, especially in cases where
stable solutions simply could not be obtained without the equilib-
rium method. It is important to remember that while the equilib-
rium xenon treatment allows stable solutions to be obtained for
any model, the equilibrium levels are only as accurate as the model
they have been calculated for.
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