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a b s t r a c t

Numerically stable Monte Carlo burnup calculations of nuclear fuel cycles are now possible with the pre-
viously derived Stochastic Implicit Euler method based coupling scheme. In this paper, we show that this
scheme can be easily extended to include the thermal–hydraulic feedback during the Monte Carlo burnup
simulations, while preserving its unconditional stability property. At each time step, the implicit solution
(for the end-of-step neutron flux, fuel nuclide densities and thermal–hydraulic conditions) is calculated
iteratively by the stochastic approximation; the fuel nuclide densities and thermal–hydraulic conditions
are iterated simultaneously. This coupling scheme is derived as stable in theory; i.e., its stability is not
conditioned by the choice of time steps.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The purpose of this paper is to further develop methods allow-
ing for realistic and accurate Monte Carlo burnup calculations of
fuel cycles of critical reactors. A variety of Monte Carlo burnup
codes, linking various Monte Carlo neutron transport codes to
depletion codes or built-in procedures, is available at present, e.g.
MCB2 (Cetnar et al., 2000), MOCUP (Moore et al., 1995), MONTE-
BURNS2 (Poston and Trellue, 1999), ALEPH (Haeck et al., 2006),
MCNPX2.6 (Fensin et al., 2010), SERPENT (Leppänen, 2012), and
many others.

The accuracy of the Monte Carlo fuel cycle calculations (the
difference between the computed and correct data) is affected
by a number of factors, such as the statistical precision of the cal-
culation, errors in nuclear data libraries, approximations made to
the reactor core model, and also the numerical stability of the cal-
culation. The inadequate numerical stability of the coupling
schemes in the existing Monte Carlo burnup codes has been iden-
tified as an important problem (Dufek and Hoogenboom, 2009;
Dufek et al., 2013b); the instability is driven by a strong neutronic
feedback from the nuclide field. While a stable coupling scheme
was recently derived based on the new Stochastic Implicit Euler
(SIE) method (Dufek et al., 2013a), the scheme assumed fixed
thermal–hydraulic conditions during the whole fuel cycle calcula-
tion. Yet, especially in boiling water reactors (BWRs) the coolant
(moderator) density distribution does change during the fuel cy-
cle, and the changes should be simulated. Since the coolant rep-
resents a strong reactivity feedback in these reactors, adjusting
the coolant density distribution over the time steps during Monte
Carlo burnup calculations may cause numerical instability even
when a stable coupling scheme is applied on the fuel depletion
process.

In this paper, we eliminate the assumption of the fixed ther-
mal–hydraulic conditions that are commonly applied to reactor
core models in Monte Carlo burnup calculations. The thermal–
hydraulic feedback is realised here by extending the previously de-
rived Stochastic Implicit Euler (SIE) based coupling scheme for
Monte Carlo burnup calculations. The extended coupling scheme
iterates the end-of-step neutron flux, fuel nuclide densities and
thermal–hydraulic conditions simultaneously during an inner iter-
ation at each time step. The unconditional stability property of this
coupling scheme is preserved.

The paper is organised as follows. Section 2 states the governing
equations for neutron transport criticality, fuel depletion, thermal–
hydraulic conditions and additional constrains. In Section 3 we
derive the Stochastic Implicit Euler (SIE) method based coupling
scheme for Monte Carlo burnup calculations with the thermal–
hydraulic feedback, and suggest the possible algorithms of
implementing the method in Monte Carlo burnup codes. Section
4 summarises our conclusions.
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2. Governing equations

The geometry and material properties of a nuclear reactor can
be described by NF(r) – the nuclide field in fuel and other static
materials, NR(r) – the nuclide field in locations of control rods,
NC(r) – the nuclide field in coolant (moderator), and the tempera-
ture field T(r). The elements of the nuclide field vectors denote
concentrations of various nuclides at the position r. The fundamen-
tal-mode neutron flux /(r,X,E) is then determined by these nuclide
fields and the boundary conditions.

The nuclide field NF(r) changes during the reactor operation due
to the depletion process driven by the neutron flux /(r,X,E). Due to
its dependence onNF(r), the fundamental-mode neutron flux
changes during the reactor operation as well. Consequently, the
changes in the neutron flux are reflected into the changes inNC(r).
The purpose of fuel cycle calculations is to determine the changes
in the nuclide fields and /(s) � /(r,X,E,t) during the whole fuel
cycle.

The above problem can be described by a system of coupled
equations: the burnup (ODE) equation that describes the time
change of the nuclide field, the criticality (eigenvalue) neutron
transport equation that gives the fundamental-mode neutron flux
in the core, and thermal–hydraulic equations that describe the
coolant (moderator) mass density distribution.

The fuel burnup equation (Bell and Glasstone, 1970),

dNFðr; tÞ
dt

¼Mð/; TÞNFðr; tÞ; ð1Þ

is an ordinary differential equation where

Mð/Þ ¼
Z 1

0
/ðr; E; tÞXðTÞdEþD;

where X is a cross-section and fission yield matrix, D is a decay ma-
trix, and T(r,t) is the temperature at r in time t. Eq. (1) has a formal
solution (Bell and Glasstone, 1970)

NFðr; tÞ ¼ NF;0ðrÞ exp½Mð/; TÞðt � t0Þ�; ð2Þ

where NF, 0(r) is the fuel nuclide field at time t0. We wish to stress
that Mð/Þ is determined by the neutron energy spectrum; thus, all
references to Eq. (2) in this paper assume the reaction rates were
determined by /.

The neutron flux /(r,E,t) is approximated at time t by the funda-
mental-mode eigenfunction of the criticality equation

BðNÞ/ðsÞ � LðNÞ � 1
k

FðNÞ
� �

/ðsÞ ¼ 0; ð3Þ

where N describes the nuclide field in the whole reactor

NðrÞ ¼
NFðrÞ for r in fuel
NCðrÞ for r in coolant

�
; ð4Þ

L(N)/(s) represents the migration and loss of neutrons from s, and
F(N)/(s) accounts for neutron production in s due to fission.

The coolant (moderator) nuclide field NC(r) is given by ther-
mal–hydraulic equations that ensure that the coolant mass, en-
ergy and momentum are conserved in the whole reactor at any
time. The thermal–hydraulic equations are to be completed with
boundary conditions for the coolant mass flow rate, inlet coolant
temperature and inlet pressure. In the following text, the nuclide
field vector NC(r) (determining the coolant density) is given by
the function C(/(s)) as the solution to the thermal–hydraulic
equations:

NCðr; tÞ ¼ Cð/ðsÞÞ: ð5Þ
Since the core conditions are required to be steady-state at all
time steps of the fuel cycle calculations, it is necessary to pre-
vent even the natural xenon oscillations that could develop in
the calculations with short time steps of few hours. This can
be achieved by forcing the concentration of 135Xe to its saturated
level; i.e., a level that is naturally established for t ?1 (with the
neutron flux and fission rate fixed). The saturated concentration
of 135Xe is reached practically after several days; thus, this addi-
tional constrain to the above system of equations is not neces-
sary when the time steps are larger than several days. The
saturated xenon concentration can be derived directly from the
burnup equation.

In the following text, the fundamental-mode flux /(s) that sat-
isfies Eq. (3) with the operator B is denoted as /B. In Section 3.2,
/BðNF ;NCÞ specifically denotes the fundamental-mode neutron flux
computed by a Monte Carlo criticality code in a reactor with the
nuclide fields NF and NC, and /B(N) denotes the fundamental-mode
neutron flux computed by a Monte Carlo criticality code in a reac-
tor with the combined nuclide field N.

3. The SIE method for MC burnup calculations with TH feedback

3.1. Derivation of the method

The Stochastic Implicit Euler method was derived for Monte
Carlo burnup calculations of nuclear fuel cycles by Dufek et al.,
2013a. Here, we extend the method derivation so that the ther-
mal–hydraulic feedback is reflected.

The implicit Euler method is the simplest method that satisfies
the unconditional stability property (Hoffman, 2001). In the con-
text of burnup calculations with thermal–hydraulic feedback, the
implicit Euler method uses the end-of-step neutron flux to deplete
the fuel over the whole time step and to calculate the thermal–
hydraulic conditions.

In the following text, we derive an efficient way of calculating
the end-of-step neutron flux. Let NF,i, NC,i and /i denote the nu-
clide field in fuel and coolant (moderator) and neutron flux at
the end of ith time step, respectively. When NF,i�1 is depleted
with the end-of-step flux /i over the ith time step then NF,i

equals

NF;i ¼ NF;i�1 exp½Mð/i; TÞðti � ti�1Þ�: ð6Þ

Similarly, the coolant (moderator) nuclide field is given at the end of
the ith time step as

NC;iðr; tÞ ¼ Cð/iÞ; ð7Þ

while /i is given by

/i ¼ /BðNF;i ;NC;iÞ: ð8Þ

Substituting NF,i from Eq. (6) and NC, i from Eq. (7) into Eq. (8)
forms a non-linear equation for /i,

/i ¼ /B NF;i�1 exp½Mð/i ;TÞðti�ti�1Þ�;Cð/iÞð Þ: ð9Þ

For sake of simplicity, let G denote the right-hand side of Eq. (9)
as a function of /i. Then Eq. (9) reduces into a simple form

/i ¼ Gð/iÞ: ð10Þ

In case of Monte Carlo calculation, G is approximated by a sto-
chastic function G that contains an additional noise term e,bG ¼ Gþ e:

This changes Eq. (10) into

/i ¼ bGð/iÞ; ð11Þ
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which is the non-linear stochastic root-finding problem (Dufek and
Gudowski, 2006).

A similar non-linear equation can be formed for Ni when /i from
Eq. (8) is substituted into Eqs. (6) and (7), which gives

Ni ¼
NF;i�1 exp½Mð/BðNiÞ; TÞðDtÞ� for r in fuel
Cð/BðNiÞÞ for r in coolant

*
; ð12Þ

which can be again reduced into a simple form

Ni ¼ HðNiÞ; ð13Þ

where H denotes the right-hand side of Eq. (12) as a function of Ni.
Dufek and Gudowski (2006) showed that Eq. (11) can be effi-

ciently solved via the stochastic approximation based iteration

/ðnþ1Þ
i ¼ /ðnÞi � andð/ðnÞi � bGð/ðnÞi ÞÞ; ð14Þ

where d is positive and smaller than 1, and the step-size an is given
by the Robbins-Monro algorithm

an ¼
1
n
: ð15Þ

Robbins and Monro (1951) proved that the stochastic approxima-
tion converges when the step-size follows Eq. (15).

Unless the initial guess is known to a certain accuracy, we ad-
vice to set d = 1 to achieve the best efficiency; then Eq. (14) can
be re-written into a common relaxation form

/ðnþ1Þ
i ¼ ð1� anÞ/ðnÞi þ an

bGð/ðnÞi Þ: ð16Þ

The same iterative approach can be applied to solving the sto-
chastic version of Eq. (13),

Ni ¼ bHðNiÞ; ð17Þ

as it is demonstrated in Section 3.2.
We would like to point out that Eq. (16) is equivalent to

/ðnþ1Þ
i ¼ 1

n

Xn

j¼1

bGð/ðjÞi Þ; ð18Þ

when the Robbins-Monro algorithm is used to generate the reduced
step-size, see (Dufek and Gudowski, 2006). According to Eq. (18), all
Monte Carlo criticality calculations are reflected in the final solution
with equal statistical weight 1/n, which ensures a good efficiency of
this iteration. The statistical errors in the iterated flux are reduced
with each new iteration step.

3.2. Implementation of the method

Here, we describe the basic implementations of the coupling
scheme that was derived in Section 3.1. Either the neutron flux
or the nuclide field is relaxed during the inner iteration (relaxation)
at each time step; therefore, two basic implementations are possi-
ble. Algorithm 1 describes the scheme with relaxation of the neu-
tron flux, while Algorithm 2 describes the scheme with relaxation
of the nuclide field.

Note that while the inner iteration in Algorithm 2 is based on
relaxing the fuel and coolant nuclide fields, the neutron flux is
combined over all inner iteration steps at line #2 as well. This
operation does not relax the neutron flux; in fact, this operation
is not necessary for the calculation at all since its outcome is not
used. The only purpose of this operation is to provide the neutron
flux as one of the results that is often requested from Monte Carlo
burnup calculations.

The number of inner iteration steps, c, is fixed in Algorithms 1
and 2; however, the inner iteration can in principle continue until
a specific convergence criterion is satisfied.
Algorithm 1. The Stochastic Implicit Euler method with relaxation
of the neutron flux

1: input: NF,0, NC,0

2: /0  /BðNF;0 ;NC;0Þ

3: for i 0,1, . . . do

4: Nð0ÞF;iþ1  NF;i exp½Mð/iÞDt�
5: NC,i+1(0) C(/i)
6: for n 1,2, . . . ,c do

7: /ðnÞiþ1  /BðNðn�1Þ
F;iþ1 ;N

ðn�1Þ
C;iþ1 Þ

8: �/ðnÞiþ1  
Pn

j¼1/ðjÞiþ1=n

9: NðnÞF;iþ1  NF;i exp½Mð�/ðnÞiþ1ÞDt�

10: NC; iþ 1ðnÞ  Cð�/ðnÞiþ1Þ
11: end for
12: NF,i+1 NF,i+1

(c)

13: NC,i+1 NC,i+1
(c)

14: /iþ1  �/ðcÞiþ1

15: end for
Algorithm 2. The Stochastic Implicit Euler method with relaxation
of the nuclide field

1: input: NF,0,NC,0

2: /0  /BðNF;0 ;NC;0Þ

3: for i 0,1, . . . ,do

4: Nð0ÞF;iþ1  NF;i exp½Mð/iÞDt�

5: Nð0Þc;iþ1  Cð/iÞ
6: for n 1,2, . . . ,c do

7: /ðnÞiþ1  /
B N

�ðn�1Þ
F;iþ1 ;N

�ðn�1Þ
C;iþ1

� �
8: NðnÞF;iþ1N

�
F;i exp½Mð/ðnÞiþ1ÞDt�

9: NðnÞC;iþ1  Cð/ðnÞiþ1Þ

10: NðnÞF;iþ1  
Pn

j¼1NðjÞF;iþ1=n

11: NðnÞC;iþ1  
Pn

j¼1NðjÞC;iþ1=n

12: end for

13: NF;iþ1  N
�ðcÞ

F;iþ1

14: NC;iþ1  N
�ðcÞ

C;iþ1

15: /iþ1  
Pc

j¼1/ðjÞiþ1=c
16: end for
4. Conclusions

We have described the way the thermal–hydraulic feedback can
be implemented into the stable Monte Carlo burnup coupling
scheme based on the Stochastic Implicit Euler method, allowing
more realistic simulations of nuclear fuel cycles where the ther-
mal–hydraulic conditions have significant effect on the actual fuel
depletion. The extended coupling scheme was derived as stable,
allowing stable burnup calculations even with large time steps.
Yet, as the implicit Euler method is a first-order method, the error
of this scheme is proportional to the time step length; therefore,
we advise to set the time steps as short as possible in order to sim-
ulate accurately the spatial and spectral changes in the neutron
flux.
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We have suggested two possible implementations of the ex-
tended SIE method: Algorithm 1 relaxes the neutron flux in the in-
ner iteration, while Algorithm 2 relaxes the nuclide field. By
relaxing the neutron flux the relaxation is automatically applied
on the nuclide field through the burnup and thermal–hydraulic
equations; similarly, by relaxing the nuclide field the relaxation
is applied on the neutron flux through the criticality equation.

The description of Algorithms 1 and 2 is schematic; while they
make use of Eq. (18), they could equally well relax the neutron flux
or the nuclide density using Eqs. (14) and (15). Algorithm 1 can be
implemented easily as the calculation of the relaxed neutron flux
and one-group cross sections can simply combine samples over
the inner iteration steps. Algorithms 2 may be less suitable for
Monte Carlo calculations since the fuel is depleted with a neutron
flux that may suffer from large statistical errors (as the flux is com-
puted in a single inner iteration step).

The purpose of this paper was to derive a stable coupling
scheme for Monte Carlo burnup calculations with the thermal–
hydraulic feedback. Specific optimisations of this scheme were
not addressed in this paper.
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