Joint International Conference on Supercomputing in Nuclear Applications and Monte Carlo 2013 (SNA + MC 2013)

La Cité des Sciences et de I’Industrie, Paris, France, October 27-31, 2013

Python-based framework for coupled MC — TH reactor calculations

A. Travleev !, R. Molitor?, V. Sanchez!

! Institute for Neutron Physics and Reactor Technology (INR), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen,
Germany
" Corresponding Author, anton.travleev@Kkit.edu

Abstract
We develop a set of python packages to provide modern programming interface to neutronics and TH codes.
Currently implemented interfaces to the MCNP and SCF codes allow efficient description of neutronics and
thermo-hydraulics domains and provide framework for coupling.

KEYWORDS: Python, MCNP, coupled MC-TH, SCF

l. Introduction

The High Performance Monte Carlo Reactor Core Analysis
(HPMC) project aims full-core coupled calculations
including neutronics, thermo-hydraulics, burnup and time
dependence. This goal will be achieved in steps, starting
from coupling of two physics domains (e.g. neutronics and
thermo-hydraulics, neutronics and nuclide kinetics, etc.) for
simple pin and assembly geometries. The transition from
simple geometries to more general and complex implies that
the coupling code developed for simple geometry at the first
stage of the project should be reused on later stages.

It is assumed in the HPMC project that on certain stage
cluster computers will be used for Monte-Carlo neutronics
calculations. This means that the developed code should
work on local desktops as well on cluster nodes.

These two aspects of the project led us to development of a
python-based framework for coupling. The concept of this
framework, the current development stage, code examples
and some calculation results are presented in this work.

I1. Concept of the coupling framework

The coupling framework includes (a) means to describe a
general calculation model, where data common for all
physics domain can be specified, and (b) particular code
back-ends. The code back-ends understand the general
model, provide interface to code-specific data, and handle
the code input and output files.

This framework structure allows to independently develop
code back-ends, once the structure of the general model is
defined. To a user (a nuclear reactor physicist performing
computations), this framework structure provides convenient
possibility to define common data only once, as a general
model, and to use these data in each code involved into

coupled calculations.

1. General model
The general model, as currently implemented, describes
geometry of the calculation domain.

To represent a PWR- or BWR-like geometry, two types of
solids are defined: a rectangular parallelepiped (box), and a
vertical cylinder. There are several rules that the solids obey:
A solid can be inserted into another one, and can be
positioned arbitrarily with respect to its container; Several
solids can be inserted into the same container, the recently
inserted covers the previously inserted; A solid can be
inserted into only one container at the same time.

For example, a general model describing one fuel pin with
surrounded coolant can have the following elements:
e A box representing the coolant,
e acylinder inserted into the coolant box,
representing the cladding,
e acylinder inserted into the cladding cylinder,
representing the gap,
e acylinder inserted into the gap cylinder,
representing the fuel pellets.

Each element of the general model has attributes to represent
state variables. Currently implemented are heat, temperature
and density axial profiles. Each state variable attribute has its
own axial meshing. Each axial mesh of every state variable
has its own value. Thus, axial profiles for heat, density and
temperature are represented by piecewise-constant functions.

A material name can be assigned to each general model
element. Currently, these are just strings; the actual meaning
of the material name must be specified to every particular
code backend.

The following code is an example of a pin model with the
structure as described above:

from hpmc import Box, Cylinder

water box

= Box(X=1.27, Y=1.27, Z=390+50)

cladding

= w.insert("clad®, Cylinder(R=0.475, Z=3400))
gap

= c.insert("gap”,
fuel pellets

= g.insert("fuel”,

Cylinder(R=0.411, 7=390))

Cylinder(R=0.4025, 7Z=g.2))

material names
-.material = “water”
.material = "zirc"
-.material = "uo2”

water density
.dens.set_grid([1]*10)
.dens.set_values(1)
water temperature
-temp.set_grid([1]1*7)
.temp.set_values(580.)
fuel temperature
-temp.set_grid([1]*6)
-temp.set_values(1200)
mesh for heat:

10 equal mesh elements
const. dens., g/cm3

7 mesh elements
const. temp, K

6 mesh elements

-heat.set_grid([1]*10) # 10 mesh elements
-heat.set_values([1, 2, 3, 4, 5,
. 5, 4, 3, 2, 1D

and clad densities are constant:
.dens.set_values(4.)
.dens.set_values(10.)

=HOH =H=mH=m=mHFE=S=HSI=IH-HOS H=HFHEQHOHFEH

The ‘hpmc’ package is the package where the solids and

axial mesh classes are defined. The insert() method puts a
solid given as its second argument with the key, specified as
the first argument, and returns the inserted solid. The
set_grid() and set_values() methods of the heat, temp(erature)
and dens(ity) attributes are used to specify the piecewise
constant representation of the correspondent state variables.

2. MCNP backend

The MCNPY backend is implemented in two steps. The
stand-alone python package ‘mcnp’ provides object-oriented
description of cells, surfaces, tallies and materials. The
MCNP interface, defined as a part of the ‘hpmc’ package
describing the general model, can convert solids of the
general model to cells and surfaces of the ‘mcnp’ package.

The MCNP interface needs certain MCNP-specific data to
convert a general model to a valid MCNP input file. This
includes material composition, boundary conditions, source
specification.

In the following example we show the definition of water for
MCNP:

import mcnp

natural element compositions
h = mcnp_Material ("H")

o0 = mcnp.Material("0%)

water chemical composition
water = h*2 + o

thermal data for H
water.thermal = "lIw"

in water

The Material class has predefined natural isotopic
compositions?. Instances of this class can be mixed using
weight, atomic or volume (if material density is specified)
fractions. Cross-section suffices are not set directly. Instead,
a user specifies the path to an xsdir file and sets material
temperature. Based on the content of the xsdir file, proper
suffices are chosen automatically. One can also specify
interpolation law (in this case material temperature is
represented as a mixture of cross-sections at two different
temperatures). To illustrate this functionality let us see the
MCNP material specification generated by the water
material defined above:

In [1]: print water.card()
m{0:<} $ mixture H-O at 300.0 K
1001.31c 1.9997700e+00
1002.31c 2.3000000e-04
8016.31c 9.9757000e-01
8017.31c 3.8000000e-04
8016.31c 2.0500000e-03
mt{0:<} Iwtr01.31t $ thermal data at 293.606K

Note the use of thermal data. No temperature interpolation is
implemented for thermal data, the code only choose the data
with most close temperature.

A user must provide correspondence between the MCNP
materials and material names of the general model. In the
next example it is shown how to create an MCNP interface
for the general model defined above and how to specify the
material composition, relevant to MCNP:

from hpmc import Mcnplnterface
mci = Mcnplnterface(w)
mci.materials["water®] = water

The Mecnplinterface class provides also means to define
lateral and axial boundary conditions, to specify initial
neutron source and number of cycles in a criticality run.

After all relevant data are specified, one can start MCNP
with the run() method. This method requires one argument,
which specifies the MCNP execution mode. For example,
the following code creates a folder, generates the input file
corresondent to the geometry of the general model, starts
MCNP in the initial run execution mode and returns results
of calculations as the copy of the input general mode:

mc_result = mci.run("r®)

The lower-cased mode ‘r’ means that the MCNP workplace
(i.e. a folder with all necessary files) is prepared, but MCNP
is not actually started. Even in this case the returned model
has some arbitrary heat profile. This option is useful to test
scripts, when not actual results, but only the formal coupling
and coding is checked.

3. SCF backend and coupling to MCNP

An interface to the SCF? code is implemented similar to the
MCNP interface. There is stand-alone package ‘scf’ whose
classes describe object-oriented representation of SCF input
data. And there is an Scflnterface class that ‘knows’ how to

convert general model geometry into the SCF geometry.

Currently, the SCF interface is in the development stage and
some of the material properties as well as some calculation
control parameters are hardcoded. However, already on this
stage, the CSF interface can handle the pin general model
described above.

An example of the SCF interface to the pin model from
above:

from hpmc import Scflnterface

sci = ScfInterface(mc_result)

sci.Tin = 580. # coolant inlet temp, K
sci.Ptot = 30e3 # total rod power, J/s

sci.Gr = 3.6e2 # mass flow rate, g/cm3
sc_result = sci.run('r")

Note that we passed to the SCF interface the general model
returned by the MCNP interface. in this way, results of
MCNP run appear in the input for SCF. This technique
provides the basis for effective and transparent data handling
between codes.

Additionally, one can perform mathematical operations
(currently implemented addition, subtraction, multiplication)
on the attributes representing density, temperature and heat.
For example, a relaxation formula of this kind:

Pr,i =a Pr,i—l + (1 - a)Pm (1)

where subscript r denotes relaxed power used as input for
SCF, and the ‘m’ subscript denotes the power computed by
MCNP at i-th iteration, can be described as the following
code:

i-1 heat, used for scf input
Pr = sci.gm.values()[-1]-heat

i-th mcnp result:
Pm = mc_result.values()[-1]-heat

relaxation factor
a=0.5

new relaxed power:
Pr = a*Pr + (1. - a)*Pm

I11. Results of illustrative coupled calculations

To test the developed framework and to provide a real-world
example, we define a model to represent a PWR fuel pin.
Two coupling schemes are coded: one utilizes relaxation of
the power axial profile with MCNP statistics increase on
each iteration”, the other utilizes relaxation of the fuel
temperature axial profile with the constant MCNP statistics.

Figure 1 shows axial profiles of fuel heat and temperature
after the 22-nd iteration. At this iteration MCNP was
scheduled to sample about 2400 cycles, 50 of them are
inactive; each cycle has 500 particle histories. Black line on
the upper plot shows the relaxed power obtained on this

iteration, computed as superposition of the MCNP result
(yellow line) and previous relaxed power (grey line). One
can see that on this iteration the new MCNP result does not
introduce considerable changes to the relaxed distribution.

The lower plot shows behavior of the fuel temperature as
computed with SCF for the relaxed power. For comparison,
the correspondent axial profiles obtained on the previous
iteration, is shown.

0.8 T 4
07 H
Wpv—

0.6 .

"

205 |

g —

204

¢

0.3

0.2

0.1

1500

Ty,

1400} .
o . « o T
o
£ 1300
o
g 1200
E
b}
= 1100}
2

1000}

I
900,06 150 —100 =50 0 50 100 150 200

z coordinate, cm
Figure 1: Results of the first coupling scheme

The second figure shows results on the 30-th iteration of the
second coupling scheme. The upper plot shows the relaxed
fuel temperature (black line), which is obtained as
superposition of SCF result (yellow line) and relaxed fuel
temperature on the previous step (grey line). The lowest plot
shows the fuel heat axial profile, as computed by MCNP for
the model with relaxed fuel temperature, water temperature
and density.

It interesting to note that both results are obtained with
almost the same number of cycles over the whole iterations.
In the first coupling scheme, there were 200 cycles and this
number increased by about 100 each iteration. Thus, after the
22-nd iteration, where about 2400 cycles were scheduled, the
cumulative number of cycles reached about 29000. This is
almost the same as the total number of cycles after 30
iterations of the second coupling scheme, where on each
iteration, MCNP was scheduled to sample 1000 cycles.

1600

1500F

W
& 1400f

fuel temperatur

o
=N W
o o o
o © o

10001

o
o
(=]

o

o
o

(I

e

o

]
[]
|

relative heat

o
=
]

0.2

0 . s L \ . \
9200 =150 =100 =50 0 50 100 150 200
z coordinate, cm

Figure 2: Results of the second coupling scheme

IV. Current state and outlook

The example code snippets above show the most important
already implemented features of the framework.
Additionally, there are some auxiliary mechanisms that

simplify everyday life of a user running coupled calculations.

Among them is the ability to dump current iteration, so it can
be continued later, and an automatic generation of figure
reports similar to the plots shown above.

The documentation is developed in parallel with the
packages, with a small delay necessary to exclude
documenting of experimental stuff. The Sphinx® system is
used to write documentation. This system provides an
environment, where the code examples written in the
documentation can be run through the Python interpreter,
ensuring that the documentation is intact with the code.

The presented framework, although already can be used to
perform coupled simulations of a stand-alone pin, is under
development. The nearest plans, according to the goals of the
HPMC project, is to improve MCNP and SCF interfaces to
the level that allows modeling and coupling calculations of a
nuclear reactor core detailed down to assembly- and
pin-level. Additionally, an interface to the Serpent® code
must be provided.

Since the full reactor core simulations with Monte-Carlo
codes are feasible only when run in parallel, transition from
desktops (currently, the packages work both on Windows
and Linux machines) to clusters is unavoidable. A basement
for this transition is ready, however, implementation details
will depend on the cluster’s job scheduling environment.

Further plans may include coupling to the parts of

KANEXT" system and some burnup codes. This, however
lies beyond the HPMC project.

Acknowledgement

This work is funded by the European Commission via the
FP7 project HPMC “High-Performance Monte Carlo
Reactor Core Analysis” under contract no. 295971.

References

1) X-5 Monte Carlo Team, MCNP — A General Monte Carlo
N-Particle Transport Code, Version 5, LANL (2003).

2) Pure Appl. Chem., vol. 83, No 2, pp. 397-410, 2011

3) V. Sanchez, U. Imke, A. Ivanov, R. Gomez,
“SUBCHANFLOW: A Thermal-Hydraulic Sub-Channel
Program to Analyse Fuel Rod Bundles and Reactor Cores”,
17th Pacific Basin Nuclear Conference, Cancun, México,
2010.

4) Dufek, J. and Gudowski, W., “Stochastic Approximation for
Monte Carlo Calculation of Steady-State Conditions in
Thermal Reactors,” Nucl. Scii. Eng., Vol. 152, 2006, pp. 274.

5) Sphinx documentation, http://sphinx-doc.org/

6) Serpent 2, a Continuous-energy Monte Carlo Reactor Physics
Burnup Calculation Code, http://montecarlo.vtt.fi/

7) Becker, M., Criekingen, S. Van, Broeders, C.H.M.: The
KArlsruhe PROgram System KAPROS and its successor the
Karlsruhe Neutronic Extendable Tool KANEXT,
http://inrwww.fzk.de/kanext.html, 2008.

