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Abstract 

We develop a set of python packages to provide modern programming interface to neutronics and TH codes. 
Currently implemented interfaces to the MCNP and SCF codes allow efficient description of neutronics and 
thermo-hydraulics domains and provide framework for coupling.  

 
 

KEYWORDS: Python, MCNP, coupled MC-TH, SCF 
 
 

I. Introduction 

The High Performance Monte Carlo Reactor Core Analysis 
(HPMC) project aims full-core coupled calculations 
including neutronics, thermo-hydraulics, burnup and time 
dependence. This goal will be achieved in steps, starting 
from coupling of two physics domains (e.g. neutronics and 
thermo-hydraulics, neutronics and nuclide kinetics, etc.) for 
simple pin and assembly geometries. The transition from 
simple geometries to more general and complex implies that 
the coupling code developed for simple geometry at the first 
stage of the project should be reused on later stages. 
 
It is assumed in the HPMC project that on certain stage 
cluster computers will be used for Monte-Carlo neutronics 
calculations. This means that the developed code should 
work on local desktops as well on cluster nodes. 
 
These two aspects of the project led us to development of a 
python-based framework for coupling. The concept of this 
framework, the current development stage, code examples 
and some calculation results are presented in this work. 
 
II. Concept of the coupling framework 

The coupling framework includes (a) means to describe a 
general calculation model, where data common for all 
physics domain can be specified, and (b) particular code 
back-ends. The code back-ends understand the general 
model, provide interface to code-specific data, and handle 
the code input and output files. 
 
This framework structure allows to independently develop 
code back-ends, once the structure of the general model is 
defined. To a user (a nuclear reactor physicist performing 
computations), this framework structure provides convenient 
possibility to define common data only once, as a general 
model, and to use these data in each code involved into 

coupled calculations. 
 
1. General model 
The general model, as currently implemented, describes 
geometry of the calculation domain. 
 
To represent a PWR- or BWR-like geometry, two types of 
solids are defined: a rectangular parallelepiped (box), and a 
vertical cylinder. There are several rules that the solids obey: 
A solid can be inserted into another one, and can be 
positioned arbitrarily with respect to its container; Several 
solids can be inserted into the same container, the recently 
inserted covers the previously inserted; A solid can be 
inserted into only one container at the same time. 
 
For example, a general model describing one fuel pin with 
surrounded coolant can have the following elements: 

 A box representing the coolant, 

 a cylinder inserted into the coolant box, 
representing the cladding, 

 a cylinder inserted into the cladding cylinder, 
representing the gap, 

 a cylinder inserted into the gap cylinder, 
representing the fuel pellets. 

Each element of the general model has attributes to represent 
state variables. Currently implemented are heat, temperature 
and density axial profiles. Each state variable attribute has its 
own axial meshing. Each axial mesh of every state variable 
has its own value. Thus, axial profiles for heat, density and 
temperature are represented by piecewise-constant functions. 
 
A material name can be assigned to each general model 
element. Currently, these are just strings; the actual meaning 
of the material name must be specified to every particular 
code backend. 



 

 

 
The following code is an example of a pin model with the 
structure as described above: 
 
from hpmc import Box, Cylinder 
# water box 
w = Box(X=1.27, Y=1.27, Z=390+50) 
# cladding 
c = w.insert('clad', Cylinder(R=0.475, Z=3400)) 
# gap 
g = c.insert('gap',  Cylinder(R=0.411, Z=390)) 
# fuel pellets 
f = g.insert('fuel', Cylinder(R=0.4025, Z=g.Z)) 
# material names 
w.material = 'water' 
c.material = 'zirc' 
f.material = 'uo2' 
# water density 
w.dens.set_grid([1]*10)  # 10 equal mesh elements 
w.dens.set_values(1)     # const. dens., g/cm3 
# water temperature 
w.temp.set_grid([1]*7)   # 7 mesh elements 
w.temp.set_values(580.)  # const. temp, K 
# fuel temperature 
f.temp.set_grid([1]*6)   # 6 mesh elements 
f.temp.set_values(1200) 
# mesh for heat: 
f.heat.set_grid([1]*10)  # 10 mesh elements 
f.heat.set_values([1, 2, 3, 4, 5, 
   ....:           5, 4, 3, 2, 1]) 
# fuel and clad densities are constant: 
c.dens.set_values(4.) 
f.dens.set_values(10.) 

 
The ‘hpmc’ package is the package where the solids and 
axial mesh classes are defined. The insert() method puts a 
solid given as its second argument with the key, specified as 
the first argument, and returns the inserted solid. The 
set_grid() and set_values() methods of the heat, temp(erature) 
and dens(ity) attributes are used to specify the piecewise 
constant representation of the correspondent state variables. 
 
2. MCNP backend 
The MCNP1) backend is implemented in two steps. The 
stand-alone python package ‘mcnp’ provides object-oriented 
description of cells, surfaces, tallies and materials. The 
MCNP interface, defined as a part of the ‘hpmc’ package 
describing the general model, can convert solids of the 
general model to cells and surfaces of the ‘mcnp’ package. 
 
The MCNP interface needs certain MCNP-specific data to 
convert a general model to a valid MCNP input file. This 
includes material composition, boundary conditions, source 
specification. 
 
In the following example we show the definition of water for 
MCNP: 
 
import mcnp 
# natural element compositions 
h = mcnp.Material('H') 
o = mcnp.Material('O') 
# water chemical composition 
water = h*2 + o 
# thermal data for H in water 
water.thermal = 'lw' 

 

The Material class has predefined natural isotopic 
compositions2). Instances of this class can be mixed using 
weight, atomic or volume (if material density is specified) 
fractions. Cross-section suffices are not set directly. Instead, 
a user specifies the path to an xsdir file and sets material 
temperature. Based on the content of the xsdir file, proper 
suffices are chosen automatically. One can also specify 
interpolation law (in this case material temperature is 
represented as a mixture of cross-sections at two different 
temperatures). To illustrate this functionality let us see the 
MCNP material specification generated by the water 
material defined above: 
 
In [1]: print water.card() 
m{0:<} $ mixture H-O at 300.0 K  
       1001.31c 1.9997700e+00 
       1002.31c 2.3000000e-04 
       8016.31c 9.9757000e-01 
       8017.31c 3.8000000e-04 
       8016.31c 2.0500000e-03 
mt{0:<} lwtr01.31t $ thermal data at 293.606K 

 
Note the use of thermal data. No temperature interpolation is 
implemented for thermal data, the code only choose the data 
with most close temperature. 
 
A user must provide correspondence between the MCNP 
materials and material names of the general model. In the 
next example it is shown how to create an MCNP interface 
for the general model defined above and how to specify the 
material composition, relevant to MCNP: 
 
from hpmc import McnpInterface 
mci = McnpInterface(w) 
mci.materials['water'] = water 

 
The McnpInterface class provides also means to define 
lateral and axial boundary conditions, to specify initial 
neutron source and number of cycles in a criticality run. 
 
After all relevant data are specified, one can start MCNP 
with the run() method. This method requires one argument, 
which specifies the MCNP execution mode. For example, 
the following code creates a folder, generates the input file 
corresondent to the geometry of the general model, starts 
MCNP in the initial run execution mode and returns results 
of calculations as the copy of the input general mode: 
 
mc_result = mci.run('r') 

 
The lower-cased mode ‘r’ means that the MCNP workplace 
(i.e. a folder with all necessary files) is prepared, but MCNP 
is not actually started. Even in this case the returned model 
has some arbitrary heat profile. This option is useful to test 
scripts, when not actual results, but only the formal coupling 
and coding is checked. 
 
3. SCF backend and coupling to MCNP 
An interface to the SCF3) code is implemented similar to the 
MCNP interface. There is stand-alone package ‘scf’ whose 
classes describe object-oriented representation of SCF input 
data. And there is an ScfInterface class that ‘knows’ how to 
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