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In order to increase the accuracy and the degree of spatial and energy resolution of core design studies,
coupled 3D neutronic (multi-group deterministic and continuous energy Monte-Carlo) and 3D thermal–
hydraulic (CFD and subchannel) codes are being developed worldwide. At KIT, both deterministic and
Monte-Carlo codes were coupled with subchannel codes and applied to predict the safety-related design
parameters such as minimal critical power ratio (MCPR), maximal cladding and fuel temperature, depar-
ture from nuclide boiling ratio (DNBR). These coupling approaches were revised and considerably
improved. Innovative method of internal on-the-fly thermal feedback interchange between the codes
was implemented. It no longer relies on explicit material definitions and allows the modeling of temper-
ature and density distributions based on the cell coordinates. In contrast to all existing coupled schemes,
this method uses only standard MCNP geometry input and requires only proper definition of the geomet-
rical dimensions. The initial material definition is arbitrary and is determined on-the-fly during the neu-
tron transport by the thermal–hydraulic feedback. Another key issue addressed is the optimal application
of parallel computing and the implementation of less time consuming tally estimators. Using multi-pro-
cessor computer architectures and implementing collision density flux estimator, it is possible to reduce
the Monte-Carlo running time and obtain converged results within reasonable time limit. The coupled
calculation was accelerated further, by implementing stochastic approximation-based relaxation tech-
nique. Further, it is shown that large fuel assemblies can be analyzed on subchannel level.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

High fidelity coupled solutions of neutron physics and thermal–
hydraulic codes are being developed worldwide to increase the
accuracy and the degree of spatial resolution of core design studies.
For example coupled, Three-Dimensional (3D) neutronic (multi-
group deterministic and continuous energy Monte-Carlo) and 3D
thermal–hydraulic (CFD and subchannel) codes have been realized
(Tippayakul et al., 2007; Watta et al., 2006; Puente-Espel et al.,
2009, 2010). At the Karlsruhe Institute of Technology (KIT), both
deterministic and Monte-Carlo codes have been coupled with sub-
channel codes and applied to predict the safety-related design
parameters such as pin power, maximum cladding and fuel tem-
perature of a PWR fuel assembly at nominal conditions (Sánchez
et al., 2008; Sanchez and Al-Hamry, 2009).

The research done on the topic however, is mainly limited to
small problems consisting of only few pins and based on external
coupling of the involved codes. For such problems the stability of
the coupled system is not effectively tested. In the case of large
problems consisting of many thousands of cells, achieving conver-
gence of the coupled calculation, convergence of the fission source
and proper statistics poses a real challenge. The existing coupled
schemes are affected by the inability of some Monte-Carlo codes,
such as MCNP, to model three dimensional (3D) distributions of
density and temperature. In practical terms, the definition of large
numbers of cells with distinct material specifications is required, a
serious drawback resulting in large input files. This approach seri-
ously limits the flexible geometry definition of Monte-Carlo codes.
The main application of such a coupled system is to provide refer-
ence solutions, to serve as numerical benchmark and to validate
deterministic calculations of complex fuel assembly designs,
where the homogenization theory requires reliable validation.
Therefore, having this in mind one requires the ability to model
large problems within a consistent coupled system.

In the current paper, the further development and improve-
ment of the KIT coupling approaches will be presented. In addition
the effects of the stochastic approximation method on the conver-
gence of the coupled scheme will be presented. Using this new
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acceleration method, it is possible to achieve uniform convergence.
In addition, it is shown how the degree of convergence depends
only on the number of coupled iterations.

The innovative internal coupling scheme implemented recently
in MCNP5/SUBCHANFLOW, enabling the cell-wise definition of
density and temperature distributions, will be presented. Using
this innovative coupling approach it is no longer necessary to de-
fine massive MCNP inputs, when distribution of densities and tem-
peratures are required. The MCNP input is kept as simple as
possible and it can be built by using only standard MCNP features.
In the framework of the new internal coupling scheme the neu-
trons obtain their feedback information on the fly as they explore
the geometry. This strategy is applied to both single differential
and double differential data.

2. Codes used in the coupled calculations

The Monte-Carlo code MCNP5 and the thermal–hydraulic sub-
channel code SUBCHANFLOW are selected for these investigations.
In addition, NJOY modules LEAPR, THERMR, ACER and BROADR are
used to process the nuclear data.

2.1. The thermal–hydraulic subchannel code SUBCHANFLOW

For performing the subchannel analysis, SUBCHANFLOW (SCF),
a code under development at the KIT, was employed (Śanchez
et al., 2010; Imke and Sanchez, 2012). It is based on the COBRA
code family and is able to treat hexagonal and square bundle
geometries with axially varying cell size. SUBCHANFLOW is writ-
ten in FORTRAN 95 language in a fully modular way. Global data
structure as well as fluid and material properties are stored in sep-
arate modules. The code solves mass, axial momentum, lateral
momentum and energy conservation equations for vertical flow
conditions. SUBCHANFLOW supports water, lead, helium, lead–bis-
muth and sodium as working fluid. Using thermal–hydraulic mod-
eling based on 3 equations approach. Recently, a boron transport
model and a point kinetics model have been implemented.

2.2. The neutronic code MCNP5 and the nuclear data processing code
NJOY

MCNP5 simulates neutron transport in three dimensions using
the Monte-Carlo method (Brown, 2005; MCNP, 2004). In the cou-
pled run MCNP5 is used to generate the power profile, which is
then transferred to SUBCHANFLOW. In order to read the power
profile the newly implemented collision density estimator for the
cell tally (Fx:n) and mesh tally (FMESH4:n) are used. In addition,
the nuclear data processing code NJOY99 was used. The module
BROADR (NEA/NSC/DOC, 2006) was used for Doppler-broadening
of the continuous energy cross sections. In addition to the BROADR
module, the LEAPR-THERMR-ACER module sequence was used for
preparing thermal scattering data at different temperatures.

3. Coupled Monte-Carlo – thermal–hydraulic calculations

3.1. Mathematical definition of the problem

The steady-state neutron transport equation with no external
sources can be transformed into integral form (1), the complete
derivation can be found in Spanier and Gelbart, (1969), Lewis
and Miller, (1984).

uðfÞ ¼
ZZ

C
Kðf; f0Þuðf0Þdf0 ð1Þ

Here C denotes the integration domain of the phase space and f
represents the phase space variables. This is a Fredholm integral
equation. Being a fixed point problem the existence of solution
is determined by the Banach fixed point theorem (Dunford and
Schwartz,1958), (Kolmogorov and Fomin, 1963):

Theorem 1. LetM be a complete metric space with distance between
two points A and B given by q(A,B). Moreover, let L :M!M be a
contraction operator, for which there exists k 2 (0,1) such that for all
A;B 2 M;qðLðAÞ;LðBÞÞ 6 kqðA;BÞ. Then, there exists a unique A 2 M
such that LðAÞ ¼ A. The point A, can be generated by the iteration
LðAn�1Þ ¼ An, with A0 being arbitrary.

Here the distance is defined to have the following properties:

For all A;B;C 2 M;qðA;AÞ ¼ 0, qðA;BÞP 0;qðA;BÞ ¼ qðB;AÞ and
qðA;BÞ 6 qðA;CÞ þ qðB;CÞ.

These important properties of the space M allow us to define
convergence. In fact, the proof of the theorem is based on showing
that q(An,Am) for An;Am 2M is a Cauchy sequence converging due
to the metric spaceM being complete by definition. Therefore, the
following limit exists (2)

lim
n!1

An ¼ lim
n!1
LðAn�1Þ

A� ¼ LðA�Þ:
ð2Þ

The Banach fixed point theorem gives important insight into the
solutions of (1) and the space they reside on. It should be noted
that to fulfill the conditions of a contraction operator, the kernel
of the integral transport equation should be bounded and continu-
ous (Dunford and Schwartz,1958).

As pointed out in Dufek and Gudowski, (2006), the estimation of
the power profile distribution results in the solution of the follow-
ing problem (3)

u ¼ GðTðuÞ;HðuÞÞ; ð3Þ

where H(u) and T(u) are the density and temperature distributions
and the value of G(T(u), H(u)) is estimated by the Monte Carlo
codes with superimposed statistic noise e. The Monte-Carlo esti-
mate of the left hand side of (3) is defined as (4)

YðuÞ ¼ GðTðuÞ;HðuÞÞ þ e ð4Þ

The problem as given by (3) can be in principle solved by an iter-
ative scheme, consecutively updating H(u) and T(u). However, this
is a very inefficient method. Moreover, the convergence will be lim-
ited by the magnitude of e. Therefore, in order to achieve convergence
one must run large number of iterations applying huge number of
particle histories. Based on this, it is recommended to use an acceler-
ation scheme. In the past relaxation scheme, acting on the thermal–
hydraulic parameters only, has been used (Watta et al., 2006; Hoo-
genboom et al., 2011). The old relaxation scheme is described by
the equation set (5), where ‘‘i’’ is the iteration step number.

Tweighted
fuel;iþ1 ¼ ð1�xÞT fuel;i�1 þx Tactual

fuel;i

� �
;

Tweighted
H2O;iþ1 ¼ ð1�xÞTactual

H2O;i�1 þx Tactual
H2O;i

� �
;

qweighted
H2O;iþ1 ¼ ð1�xÞqactual

H2O;i�1 þx qactual
H2O;i

� �
:

ð5Þ

This scheme accelerates the solution. Unfortunately the conver-
gence rate is still correlated to the statistical noise. The natural
method of acceleration for problem (3) is to use a stochastic
approximation technique. Although the same method of accelera-
tion as in Dufek and Gudowski, (2006) is used, different reasoning
concerning its applicability is applied. The theorem of Robbins and
Monro is to be stated hereafter. The formulation of the theorem as
well as the proof can be found in Wasan, (1969). The basic idea is,
that by observing random variables Y(Xn) of an unknown distribu-
tion, roots of the unknown underlying distribution can be found. In
the particular case this is the estimate of (4).
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Theorem 2. Let K be a distribution function and a a real number such
that there is a real number X giving KðXÞ ¼ a; let K be differentiable at
X and K0ðXÞ > 0. Let X1 be a real number and n be a positive integer.
Let

Xnþ1 ¼ Xn �
1
n
ða� YðXnÞÞ; ð6Þ

where Y(Xn) is a random variable such that the following conditional
probabilities hold

P½Yn ¼ 1jX1;X2 . . . Xn;Y1;Y2; . . . Yn�1� ¼ KðXnÞ;
P½Yn ¼ 0jX1;X2 . . . Xn;Y1;Y2; . . . Yn�1� ¼ 1�KðXnÞ:

ð7Þ

Then limn!1EðXn � XÞ2, so that the random sequence Xn converges
in probability to X.

Since a fixed source problem is being discussed KðXÞ ¼ a trans-
forms to KðXÞ ¼ X and (6) to

Xnþ1 ¼ Xn �
1
n
ðXn � YnÞ; ð8Þ

First of all, note that this theorem, as given is for functions
operating on the real numbers. In this case, however, the solu-
tions of (1) residing on some complete metric space, as defined
by Theorem 1 are of interest. Therefore, it should be investigated
whether the conditions of Theorem 2 are fulfilled on the complete
metric space M. Since in essence the theorem of Robbins-Monro
is proven by showing that the sequence nn = E(Xn � X)2 has limit
lim
n!1

nn ¼ 0 the possibility to define metric that allows conver-
gence onM is required. This is obviously possible due to the con-
ditions of the Banach theorem. It remains to be show K0ðXÞ > 0.
This is very challenging, because the exact form of KðXÞ or in
the concrete case G(T(u), H(u)) is not known. However, Eqs. (1)
and (3) are estimates of the same object u. Based on that,
G(T(u), H(u)) from the right-hand-side (RHS) of (3) can be iden-
tified with the left-hand-side (LHS) of (1). Applying the Gateaux
derivative to the RHS of (1) and using the linearity of integration
one obtains

D/ðn0ÞFð/ðnÞÞ ¼ lim
�!0

Fð/ðnÞ þ �dðn� n0ÞÞ � Fð/ðnÞÞ
e

¼
Z

Kðn0; nÞdðn0 � nÞdn0 > 0: ð9Þ

The last result (8) tells us, that the positivity of the derivative is
ensured by the positivity of the kernel. In addition the solutions of
(1) are assumed to be continuous functions, based on physical
arguments. In (9) the notation was simplified by denoting the
RHS of (1) by the linear operator F(u).

Based on the above considerations, the Robbins-Monro theorem
can be applied to the original problem. Here Yn from (8) is the
Monte Carlo estimate of G(T(u), H(u)) + e, i.e. Eq. (4).

There exists an additional argument confirming the applicabil-
ity of the Robbins-Monro theorem. Consider the following equiva-
lent formulation Theorem 2.1 (Bauer, 1990), of Theorem 2. Let the
sequence (10) being iterative estimate of the equation K(h) = a

Xnþ1 ¼ Xn � cnða� YðXnÞÞ; ð10Þ

where the following conditions on cn are imposed (11)

X1
n¼1

cn ¼ 1;
X1
n¼1

c2
n <1: ð11Þ

Choosing cn = 1/n and using the Cauchy integral convergence test,
one can easily show that the conditions (11) are fulfilled for this
choice of cn.

Theorem 2.1. If K(X) and Y(X) fulfill the following conditions
8X 2 R : jKðXÞj 6 AjXj þ B; ðA;B 2 RÞ; ð12Þ
E½YðXÞ � KðXÞ� <1; ð13Þ
8e 2 ð0;1Þ;8X : 1=e > jX � hj > e) inf

X
jKðXÞ � hj > 0: ð14Þ

The limit lim
n!1

EðXn � hÞ2 ¼ 0 exists.

The theorem has to be proven applicable to the particular case
(3). Since a fixed point problem is being discussed, KðhÞ ¼ a trans-
lates to KðhÞ ¼ h. As already shown, Theorem 1 allows the defini-
tion of metric on the solution space of (3) and the limit
lim
n!1

EðXn � hÞ2 can be studied. Theorem 2.1, however, requires
proving the additional conditions (12)–(14). Condition (12) holds
since G(T(u), H(u)) has to be a contraction operator. According to
Theorem 1, choosing any u, u0, one obtains (15)

jGðTðuÞ;HðuÞÞ � GðTðu0Þ;Hðu0ÞÞj 6 Aju�u0j: ð15Þ

Since u and u0 are arbitrary let u0 = 0. If u0 = 0 one obtains G(T(u0),
H(u0)) = 0. Then (16) follows, the real constant is in this case B = 0

jGðTðuÞ;HðuÞÞj 6 Ajuj: ð16Þ

The condition (13) holds since the counterparts of K(X) and Y(X),
G(T(u), H(u)) and Y(u)) are both bounded and they differ only by
the stochastic noise. The interval 1

e > jX � hj > e translates to com-
pact in the space of u Moreover G(T(u), H(u)) is continuous and
G(T(u), H(u)) – u for all u = u*, where u* is the fixed point of
interest. Therefore the minimum of |G(T(u), H(u)) � u| is attained
on a compact and infX |G(T(u), H(u)) � u| > 0, (14) follows.

As pointed out in (Dufek and Gudowski, (2006) Eq. (8) can be fur-
ther simplified. The notation in (8) is adapted for the case of the flux

uðnþ1Þ ¼ 1� 1
n

� �
uðnÞ þ 1

n
YðunÞ : ð17Þ

Eq. (17) simplifies to (18)

uðnþ1Þ ¼ 1
n

Xn

i¼1

YðuiÞ: ð18Þ

This can be easily shown by induction, first assume (18) holds
for n and then check if it holds for n + 1. Substituting (18) in (17)
the following equation is obtained . (19)

uðnþ1Þ ¼ 1� 1
n

� �
1

n� 1

Xn�1

i¼1

YðuiÞ þ
1
n

YðunÞ ¼
1
n

Xn

i¼1

YðuiÞ: ð19Þ

Formula (18) is the main result of this paper. It gives us the ex-
plicit formulation of the relaxation scheme. The flux (power pro-
file) in the next iteration is obtained to be the mean value of all
iterations. Since in essence the tally estimates from all the runs
are added together, simple error propagation with partial deriva-
tives on (18) shows the error decreases with increasing the number
of iterations. Moreover, from (18) follows that all iterations are re-
flected in the final solution with weight of 1/n. Therefore, any de-
sired convergence parameter can be achieved, if enough number of
iterations is run. This is still possible even at low number of histo-
ries. Nevertheless the number of histories and the number of inac-
tive cycles should be chosen adequate to ensure the fission source
convergence. Moreover, the effect of increasing the number of his-
tories in the old scheme is achieved by running larger number of
iterations in the new scheme.

4. Description of the internal coupled scheme

4.1. Internal coupling via memory

Coupled Monte-Carlo neutronic calculations are to be described
in this paper. In such calculations one repeatedly updates the
power profile distribution estimated by the neutronics code, in
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accordance with the changing thermal–hydraulics distribution
estimated by the deterministic code. These iterations are repeated
until the desired degree of convergence is met. Details of the calcu-
lation flow are given in Ivanov et al. , (2013). Calculation flow of the
coupled system is shown in Fig. 1.

In MCNP there exists no option to define temperature and den-
sity distribution. Therefore, all existing coupled schemes rely on
explicit geometry definition. Using this method one ends up defin-
ing explicitly all cells, where the thermal–hydraulic boundary con-
ditions are to be updated. Although straightforward, this method is
not very practical and it results in massive input files. As an illus-
trative example one can consider the study case of this paper. It
consists of 16,380 cells with thermal–hydraulic feedback. To define
them explicitly one needs 16,380 lines, only for the geometry def-
inition. However, the geometry distribution is only one part of the
problem. To define the temperature distribution, one needs a dis-
tinct material composition in each cell. This will increase the total
number of input lines to over 200,000. Clearly, another strategy for
the coupling is needed. In this paper an additional option in MCNP,
allowing the definition of temperature and density distributions is
to be presented. All serious MCNP calculations should be run in
parallel. Therefore, our scheme is written and will be described
in the framework of parallel computing.

As initial step SCF was included as a subroutine in the MCNP
code, allowing the interchange of feedback parameters via a FOR-
TRAN module. SCF is run on the master node, and once it finishes
a specially defined subroutine selects the necessary Doppler broad-
ened nuclear cross sections. In order to enable the selection, all
necessary nuclear data must be preloaded into the memory by
the master process. In the case of incoherent inelastic scattering
on bound nuclei, the additional thermal scattering data has to be
supplied in addition. It should be noted, that the selection is done
Fig. 1. Coupled calculation flow.
only once and ready to use arrays are supplied for the subsequent
transport calculation. This prohibits any computational time in-
crease due to the cross-section selection process. All feedback rel-
evant arrays are broadcasted by the master process to the slaves.

In the framework of the internal coupling it is no longer neces-
sary to define explicit material distributions. At the beginning
usual MCNP repeated structure input is defined. Actually, only
one pin cell is defined and embedded in a 3D lattice to complete
the geometry. At this moment only the proper geometric dimen-
sions matter. The difference with respect to the standard MCNP in-
put is the definition of a dummy material, used to load the
necessary cross sections into the memory. The presence of this
material is suppressed by modifying the source code. These cross
sections are subsequently retrieved by the temperature interpola-
tion subroutine.

Once the neutron transport starts, the neutrons see effective
material distribution as defined by the thermal–hydraulics code.
On-the-fly the neutron cross sections in each cell are overwritten,
performing the stochastic mixing, without any reference to the ac-
tual input. This means that the staring materials present in the in-
put, are substituted by pseudo mixtures evaluated at the proper
cell temperature. This procedure is shown in Fig. 2. After this inser-
tion the neutron transport process is conducted with macroscopic
cross-sections evaluated at the proper cell temperature. The dy-
namic material distribution was enabled in the MCNP source by
introducing custom designed subroutines for performing on-the-
fly pseudo material mixing. This change of the cross sections as
the neutron travels through the geometry, modifies the physical
environment and introduces the feedback effects. The point of
intervention is exactly before reactions are sampled and before
the eigenvalue is computed, therefore, the initial materials present
in the MCNP input are completely ignored. This modified step is
shown on the right hand side of Fig. 3

The new method of coupling does not change the physics and
must produce the same computational results as the usual MCNP
code when the geometry is subdivided into cells, each having un-
ique material, density and temperature. Testing the scheme is
therefore quite simple. Two computations one defining the feed-
back via the standard method of explicit geometry definition and
the other using the internal coupling scheme were run. Both meth-
ods produced completely identical results for both the multiplica-
tion factor and the power profile distribution. This has assured that
the internal coupling scheme works correctly.

4.2. Temperature dependence of the nuclear data

Nuclear cross sections depend on relative velocity in the center
of mass frame. Thermal oscillations of the target atomic nuclei,
inducing changes of the relative velocity, result in the Doppler
Effect, being one of the most important phenomena in nuclear
reactor safety. From the thermal–hydraulic calculation, different
material temperatures are supplied. Hence, the temperature effect
on the corresponding nuclear cross sections should be considered.
MCNP is capable of making corrections to the scattering cross sec-
tion by supplying the kinetic energy corresponding to the most
probable velocity of the target nucleus via the TMP card (van der
Marck et al., 2005; Brown, 2005). This is however, not enough to
treat the full temperature dependence.

A possible solution to the Doppler broadening of the nuclear
data is to adapt online nuclear data processing, by running the
NJOY module BROADR at each iteration step as proposed in Jou-
anne and Trama (2010), Tippayakul et al. (2007). However, in prac-
tical terms this approach results in large CPU times from running
BROADR, and large memory demand to store the broadened data.
In order to avoid this situation, another more practical approach
was followed. In the actual MCNP calculation, the pseudo material



Fig. 2. On-the-fly thermal–hydraulic treatment in MCNP. The modified procedure is shown on the right hand side.

Fig. 3. Fuel temperature axial distribution for the last two coupled runs.
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mixing was used to correct for the temperature dependence of the
nuclear data during the coupled calculation. The two materials
used in the mixture have temperatures, being the lower and the
upper bound of the particular interval, in which the actual temper-
ature obtained from SUBCHANFLOW is lying. For the atom fraction
of the material obeying lower temperature the following weight is
used (20)

flow ¼
ffiffiffiffiffiffiffiffiffiffi
Thigh

p
�

ffiffiffiffiffiffiffiffiffiffiffiffi
Tactual
p

ffiffiffiffiffiffiffiffiffiffi
Thigh

p
�

ffiffiffiffiffiffiffiffiffi
T low
p : ð20Þ

For the higher temperature material (21) is used

fhigh ¼ 1� flow: ð21Þ
By using the pseudo material mixing approach one obtains the
following cross section mixture (22)

RpseudoðTactualÞ ¼ flowRlowðT lowÞ þ fhighRhighðThighÞ: ð22Þ

It should be taken into account that the pseudo material mixing
is not interpolation in the classical sense. This method relies on the
stochastic nature of the neutronics code and there exists no nucle-
ar data generated at some intermediate temperature. When the
individual neutrons enter specific cell, they can interact with a cer-
tain nuclide at a given temperature with probability defined by its
atomic fraction.

In the framework of the internal coupling scheme all the neces-
sary information how to perform the pseudo-material mixing
(20)–(22) is assigned on the master node, and stored into arrays.
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During the transport calculation this information is retrieved and
applied to the specific cells based on the neutron coordinates.

In order to treat the thermal scattering from bound scatterers
MCNP utilizes additional thermal scattering data files, prepared
by the LEAPR-THERMR-ACER modules sequence of NJOY. While
the Doppler broadening module BROADR is capable of producing
cross-section files at all desired temperatures, LEAPR requires fre-
quency spectrum of the scattering nucleus q(x) for each tempera-
ture in order to generate the scattering law S(a,b). For the current
study the LEAPR input given in (Mattes and Keinert, (2005) was
used. In addition, the THERMR module of NJOY was used to gener-
ate the point-wise thermal scattering cross sections in PENDF for-
mat and the ACER module of NJOY was used to generate thermal
scattering data for MCNP code in ACE format.

Since the temperatures at which the thermal scattering data can
be prepared is predefined by the temperatures at which oscillation
spectrum for the scattering nucleus exists, custom designed sub-
routine was used to refine the granularity of the S(a,b) temperature
grid. This subroutine interpolates between thermal scattering files
produced by the LEAPR-THERMR-ACER sequence. Thermal scatter-
ing files have been produced on a grid of 10 K increments. On the
basis of these file the pseudo material mixing for the moderator
was performed.

In the framework of the internal coupling, on the master node
two types of information is assigned for the coolant. First, the
information necessary to perform pseudo material mixing of the
Doppler broadened data for the moderator isotopes is assigned.
This method is based on (20)–(22). In addition to the usual single
differential nuclear data references to the thermal scattering data
libraries to be used for the different hydrogen evaluations are
set. In each pseudo material mixture for the moderator two hydro-
gen evaluations are used, to each of them thermal scattering file is
assigned. This information is retrieved during the subsequent
transport run on the slaves. Graphical illustration of the pseudo
material mixing for both single differentiable and double differen-
tiable data is shown in Fig. 4. It should be taken into account that
the thermal scattering data and the hydrogen evaluations, used for
the pseudo material mixing in the moderator, are evaluated at the
same temperature.
4.3. Tallying of the power profile distribution

MCNP uses the track-length estimator to tally the neutron
fluxes. This method is very accurate and can be used to tally fluxes
in all type of cells (including void cells). The definition is based on
(Banerjee and Martin, 2012) the formula describing the track
length estimator follows (23)

w ¼ 1
NV

XN

i¼1

XTi

t¼1

wi;tdi;t: ð23Þ

This estimator is having the meaning of the total distance trav-
eled by the particles in the tally region multiplied by the weight of
the particle and divided by the volume of the tally region. The sec-
ond sum runs over the sequence of tracks for history ‘‘i’’ in the vol-
ume V. Here, wi,t and di,t are the particle weight and distance
Fig. 4. Illustration of the pseudo material mixing for the single differentiable and
the double differentiable nuclear data.
traveled, for history ‘‘i’’ and track ‘‘t’’. Using track length estimator
for flux tallying is very computationally expensive. Simple compar-
ison between MCNP runs, with and without tallying reveals large
computational time increase. For instance, running PWR with cell
based tally assembly problem consisting of 5400 cells with
200,000 (200k) histories per cycle and 650 active cycles takes 4 h
on 48 cores, if the track length tallying is done. Identical input
without tallying takes about 30 min. The mesh tally, although
much more efficient still increases the computational time
significantly.

Since power tallying is done in high collision cells, without loss
of precision, one can use the collision density estimator for flux tal-
lying. The collision density estimator will give wrong results in the
case when used in low density cells and is completely inapplicable
for voided regions. The collision density estimator is defined by

w ¼ 1
NV

XN

i¼1

XCi

c¼1

wi;c

Rtðfi;cÞ
: ð24Þ

Using this method, the flux is estimated by the total number of col-
lisions for N histories in the volume V divided by the total cross-sec-
tion. Here, the second sum runs over the sequence of collisions for
history ‘‘i’’ in the volume V. fi,c is the phase space vector for history
‘‘i’’ at collision event ‘‘c’’.

The collision density estimator was implemented by modifying
the tallying subroutine of MCNP. It was instructed to compute the
ratio formulae (24) and accumulate the results every time, when
the neutron undergoes a collision. Implementing the collision den-
sity estimator resulted in significant computational time decrease.
Both the cell and the mesh tallies were modified to use the colli-
sion density estimator.

The reduced runtime is due to the less frequent calls of the tal-
lying subroutine, namely, only when a collision has happened. It
should be taken into account that the tallying procedure in MCNP
is independent on the eigenvalue estimation. Therefore, no
changes in terms of the eigenvalue were observed.

The implementation of the collision density estimator was val-
idated by comparing it to the original track length estimator. The
differences for all test cases were in the statistical uncertainty
range. Tally estimates normalized to one source neutron as they
are obtained by MCNP are shown in Fig. 5. The test case shown
is a PWR pin problem.

Note that the difference shown on the LHS axis of Fig. 5 is com-
puted using (25)

100�
ptrack�length � pcollision�density

ptrack�length

�����
�����: ð25Þ

The performance of the tallies was tested on a quarter-core
PWR model. Since it is quite well known that cell based tallies
show very bad performance for large models, we have concen-
trated on testing the mesh tally. The mesh tally was set to accumu-
late scores in each pin cell. The geometry was subdivided into 20
axial zones. The following results, shown in Table 1 were obtained.
5. Verification of the coupled approach

5.1. Description of the verification model

As a test case a PWR fuel assembly was used. The thermal–
hydraulic boundary conditions are given in Fig. 6. The new method
of acceleration by stochastic approximation was tested against the
old method of mixing the thermal–hydraulic parameters from two
subsequent runs (5).

The old relaxation scheme was unstable and the convergence
was strongly correlated to the tally relative errors. The following



Fig. 5. Comparison of the track length estimator and the collision density estimator.

Table 1
Tally performance test.

No tallying 1 h:52 min 800k histories/cycle 600 criticality cycles
Track length FMESH 2 h:39 min 800k histories/cycle 600 criticality cycles
Collision density FMESH 2 h:10 min 800k histories/cycle 600 criticality cycles

Fig. 6. PWR assembly geometry layout cut and thermal–hydraulic boundary conditions.

Fig. 7. Maximum value of the convergence parameter versus coupled iteration. Fig. 8. k1 versus coupled iteration number.
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Fig. 9. Difference in the power profile produced by the two coupling schemes.
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criterion (26) is imposed on the fuel temperature and is used as an
estimate for convergence.

e ¼ 100�
T last

ij � Tprev
ij

T last
ij

�����
����� ð26Þ

Here the index ‘‘i’’ is the pin number and ‘‘j’’ is the axial cell number.
The indexes run over all pin cells in the problem. The thermal–
hydraulic and neutronics iterations are repeated until the desired
value for the convergence parameter is met. As evident from
Fig. 7, the old relaxation scheme has limit of convergence given
by the statistical uncertainty. It starts oscillating in the limit of e
Fig. 10. Fuel temperature and c

Table 2
Summary of the results.

Acceleration scheme Histories Active criticality cycles Co

Old 200k 600 e =
New 200k 600 e =
approaching the values for the tally relative errors. This oscillation
will not disappear even when running very large number of itera-
tions, unless the number of histories is increased. On the other
hand, by using the stochastic approximation method the conver-
gence parameter exhibits 1/N behavior. Using the new scheme, it
was possible to achieve very fine convergence e = 0.04. The old cou-
pling scheme was stopped after 18 iterations and achieving e = 0.54.
Note the reduction of the oscillation amplitude, after running 14
coupled iterations. At this point the number of histories was dou-
bled to ensure finer convergence. In contrast for the coupled itera-
tions relaying on stochastic approximation, where all iterations
were run at constant number of histories. This is possible because
all iterations are contained in the final results and the statistics is
being improved after each coupled run.

The next important step is to check whether the new relaxation
scheme induces any biasing of the results. By comparing the re-
sults for the multiplication factor close values for the two schemes
were observed. For the converged runs, the peace-wise linear curve
spanned by the k1 values should not leave the band defined by the
multiplication factor’s standard deviation. Clearly this condition is
violated for the old relaxation scheme (see Fig. 8).

Next the power profiles after achieving convergence, generated
by the two schemes, were compared. As evident form Fig. 9 the dif-
ferences are small and can be explained by the poor convergence of
the old relaxation scheme. Moreover, the difference has maxima in
the upper and lower parts of the fuel assembly, where the power
profile estimates had large uncertainties. In the positions where
the guide tubes are located, there is no power profile estimated,
therefore the values are zero and were excluded from the plot.

Finally the results for the fuel temperature distribution and the
coolant density are presented. The results are shown in Fig. 10.
Note the position of the guide tubes on the LHS.

The calculations performed with the two relaxation schemes
are summarized in Table 2. Note that the standard deviations of
oolant density distribution.

nvergence k1 Coupled iterations Processors

0.54 1.27208(6) 18 48
0.04 1.27194(5) 16 48
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the eigenvalue estimates are given in brackets and have units of
pcm.

6. Summary and outlook

In the current paper a novel internal coupling methodology be-
tween the Monte-Carlo code MCNP and the subchannel code SCF
was presented. The newly developed scheme does not rely on
the usual MCNP input description and enables the flexible defini-
tion of density and temperature distributions. In contrast to the
external coupling schemes it does not require massive input files
any more.

The convergence of the coupled scheme was accelerated and
stabilized by applying stochastic acceleration strategy. Using the
new method of acceleration it was possible to achieve 1/N conver-
gence parameter evolution. Mathematical justification as well as
numerical results were presented. For the test case, a 17 � 17
PWR fuel assembly consisting of 16,380 thermal–hydraulic feed-
back cells was chosen.

The collision density flux estimator was successfully imple-
mented and was used to tally the power profile distribution. It
was validated by comparing it to the standard track length estima-
tor used in MCNP. The new tally option resulted in a speedup of the
coupled simulations of three times compared to the simulation
based on the track length estimator.

The peculiar features of the internal coupling approach for
MCNP5/SUBCHANFLOW described above are necessary prerequi-
sites for the simulation of whole cores at both fuel assembly and
pin level in combination of massive parallel computing. In addi-
tion, this system is paving the way for depletion calculations taking
into account the thermal–hydraulic feedbacks.
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