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Abstract

Here, we provide a detailed description of a numerically stable and efficient cou-

pling scheme for steady-state Monte Carlo neutronic calculations with thermal-

hydraulic feedback. While we have previously derived and published the stochas-

tic approximation based method for coupling the Monte Carlo criticality and

thermal-hydraulic calculations, its possible implementation has not been de-

scribed in a step-by-step manner. As the simple description of the coupling

scheme was repeatedly requested from us, we have decided to make it available

via this note.
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1. Introduction

The application of the Monte Carlo method is no longer limited to simple

criticality calculations; the advances in the computer technology allow its appli-

cation in more complex problems now. In this work, we focus on steady-state

Monte Carlo neutronic calculations with the thermal-hydraulic feedback. The

outcome of such calculations gives the steady-state core conditions (the spatial

distribution of neutron flux, power, temperature, coolant density, etc.) in a

nuclear reactor running at a fixed power.
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The coupled criticality and thermal-hydraulic equations represent a non-

linear problem that should be addressed by a numerically stable method. We

have previously derived and published the stochastic approximation based method

for coupling the Monte Carlo criticality and thermal-hydraulic calculations (Dufek

and Gudowski, 2006). In its basic form the steady-state solution is obtained via

a relaxation procedure governed by the Robbins-Monro algorithm that is guar-

anteed to converge (Robbins and Monro, 1951).

While the stochastic approximation based coupling scheme has been avail-

able, we could often see attempts at coupling the Monte Carlo criticality and

thermal-hydraulic solvers via a simple fixed-point method that may diverge, de-

pending on the system properties. Partly, we ascribe this to the fact a simple

step-by-step description of the coupling scheme was not provided by Dufek and

Gudowski (2006). We wish to redeem it by this note that contains the detail

descriptions.

The paper is organised as follows. Sec. 2 states simple forms of the governing

equations. Sec. 3 briefly describes the stochastic approximation method for

computing the steady-state solution, as derived by Dufek and Gudowski (2006).

Sec. 4 contains the step-by-step description of the stochastic approximation

based coupling scheme. Sec. 5 gives a discussion on the coupling scheme.

2. Governing equations

Geometry and material properties of a nuclear reactor core can be fully de-

scribed by the nuclide field N(r), where the elements of N(r) denote concentra-

tions of various nuclides at position r. Next, let T (r) describe the temperature

field in the whole core.

The fundamental-mode neutron flux φ(r,Ω, E) is then determined by the

nuclide and temperature fields and the boundary conditions via the criticality

(eigenvalue) neutron transport equation

B(N, T )φ ≡ [L(N, T )−
1

k
F (N, T )]φ = 0, (1)
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where Lφ represents the migration and loss of neutrons from (r,Ω, E), and Fφ

accounts for neutron production in (r,Ω, E) due to fission. Let the solution to

Eq. (1) be represented by a function φB(N, T ),

φ = φB(N, T ). (2)

We shall further address the variable nuclide field in the coolant (moderator)

simply as N(r), as the nuclide field in other locations is fixed in the considered

problem. In the following text, the Monte Carlo solution of Eq. (1) is denoted

as φ̂B

(

N, T, s
)

where s is the number of simulated neutron histories.

The temperature and coolant (moderator) nuclide fields, T (r) and N(r), are

determined by thermal-hydraulic equations that ensure that the coolant mass,

energy and momentum are conserved in the whole reactor at any time. For

given coolant mass flow and inlet pressure boundary conditions, T (r) and N(r)

are determined by the power distribution (or the neutron flux field φ(r,Ω, E)).

Therefore, let Tφ(φ) and Nφ(φ) represent the solution to the thermal-hydraulic

equations,

T (r) = Tφ(φ), (3)

N(r) = Nφ(φ). (4)

Substituting T and N from Eqs. (3) and (4) into Eq. (2) gives

φ = φB

(

Nφ(φ), Tφ(φ)
)

, (5)

which shows that the steady-state neutron flux is determined by the temperature

and coolant nuclide fields that are themselves determined by the neutron flux.

Eq. (5) is thus a non-linear equation that can be written in a simpler form

φ = G(φ) (6)

where G represents the right-hand side of Eq. (5) as a function of φ.

3. The stochastic approximation

We assume that the fundamental neutron flux is computed by a Monte Carlo

solver; therefore, G in Eq. (6) must be approximated by a stochastic function
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Ĝ that contains a noise term ε,

Ĝ = G+ ε.

This changes Eq. (6) into

φ = Ĝ(φ), (7)

which is the non-linear stochastic root-finding problem. The noise term ε de-

pends on the number of random evaluations, s, of G as

ε ∼
1
√
s
.

In the context of Monte Carlo criticality calculations, s represents the number

of simulated neutron histories. In the following text, G(φ) evaluated by a Monte

Carlo simulation of s neutron histories is denoted as Ĝs(φ).

Dufek and Gudowski (2006) showed that Eq. (7) can be efficiently solved via

the stochastic approximation based iteration

φ(n) = φ(n−1) − αnd(φ
(n−1) − Ĝsn(φ

(n−1))), n = 1, 2, . . . (8)

where d ∈ (0, 1] is a fixed scalar, αn is the step-size in the nth step, sn is the

number of neutron histories simulated in the nth step, and φ(0) is an initial guess

of the neutron flux. Unless the initial guess is known to a certain accuracy, we

advice to set d = 1 to achieve the best efficiency; then Eq. (8) can be rewritten

into a common relaxation form

φ(n) = (1− αn)φ
(n−1) + αnĜsn(φ

(n−1)). (9)

There are several options as to how αn and sn can be selected at the nth

step. One possibility is to fix sn at all steps, sn = s = const., and choose the

step-size according to the Robbins-Monro algorithm (Robbins and Monro, 1951)

as

αn =
1

n
. (10)

When αn is computed by Eq. (10) then Eq. (9) is equivalent to

φ(n) =
1

n

n
∑

i=1

Ĝs(φ
(i−1)), (11)
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as derived by Dufek and Gudowski (2006). The statistical error in the relaxed

flux φ(n) is reduced with each new iteration step thanks to combining the solu-

tions from all previous steps.

Dufek and Gudowski (2006) explained that it is reasonable to let sn grow

over the iterations steps. This is motivated by the fact that the initial guess φ(0)

might contain large errors, and so the initial temperature and coolant nuclide

fields that would be computed according to φ(0) would be erroneous as well.

It would be a waste of the computational time to compute φ(1) using a large

sample-size to a great statistical precision when we knew the accuracy of the

solution would be still poor due to the large errors in temperature and coolant

nuclide field. A possible way to solve this problem would be to keep sn relatively

small (and fixed) over all iteration steps as we know the statistical precision of

the relaxed solution improves with each step; however, the frequent re-starts

of the Monte Carlo solver would decrease the efficiency of the calculation since

a large part of the computing time would be wasted on loading the neutron

cross-section libraries, simulating the inactive cycles, and other procedures that

must be performed after launching the Monte Carlo solver.

Therefore, Dufek and Gudowski (2006) suggested a system of two equations

to calculate unique values of αn and sn at each step. The first equation

αn =
sn

∑n

i=1 si
(12)

practically demands that the weight of a certain step in the relaxed solution is

equal to the relative computing cost of the step, which is motivated by the idea

of the Robbins-Monro algorithm. The second equation

αn ∝
1

√

∑n

i=1 si
(13)

demands that αn decreases in the same rate as the statistical error in standard

Monte Carlo calculations. Eqs. (12) and (13) give the quadratic equation

s2n − s1sn − s1

n−1
∑

i=1

si = 0, (14)
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that has a positive root

sn =
s1 +

√

s21 + 4s1
∑n−1

i=1 si

2
. (15)

The initial sample-size s1 must be guessed. Knowing sn, the value of αn can be

computed by Eq. (12).

Dufek and Gudowski (2006) address the above way of varying αn and sn as

the “optimal” procedure. They have suggested yet another, “adaptive”, proce-

dure that controls αn and sn according to the actual stability of the iteration;

however, we wish not to include this procedure here to keep this note as simple

as possible.

4. Description of the coupling scheme

Algorithm 1 describes the coupling scheme where the sample-size and step-

size are varied according to the “optimal” procedure derived by Dufek and

Gudowski (2006). Note that the neutron flux and temperature fields are written

as vectors in Algorithm 1. These vectors represent spatial distributions of the

respective variables, computed using a spatial mesh superimposed over the whole

system. Thus, for instance the first element in ~φ(0) gives the neutron flux

integrated over the first spatial zone. The coolant nuclide field is represented

by a unique vector at each spatial zone.

The coupling scheme described by Algorithm 1 relaxes the neutron flux

distribution since we used the neutron flux in derivations in Sections 2 and 3;

however, the relaxation may equally well be applied to the power distribution

instead. As the power distribution is the common input to the thermal-hydraulic

solvers it is convenient to let the Monte Carlo code calculate directly the power

distribution instead of the neutron flux.
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Algorithm 1 Description of the MC-TH coupling scheme with the variable

sample-size and step-size.

1: input: P , s1, ~φ
(0)

2: S0 ← 0

3: for n← 1, 2, . . . do

4: sn ← (s1 +
√

s21 + 4s1Sn−1)/2

5: Sn ← Sn−1 + sn

6: αn ← sn/Sn

7: ~T (n) ← ~Tφ(~φ
(n−1))

8: ~N(n) ← ~Nφ(~φ
(n−1))

9: ~Gn ← φ̂B

(

~N(n), ~T (n), sn
)

10: normalise flux ~Gn to achieve power P

11: ~φ(n) ← (1− αn)~φ
(n−1) + αn

~Gn

12: end for

Below, we provide comments to specific lines in Algorithm 1:

Line #1: The initial values and input variables are set at this line. The value of

P represents the required total power of the reactor. The initial sample-

size value, s1, must be guessed; we provide some recommendations of

suitable values in Sec. 5. The initial neutron flux (or power) distribution

~φ(0) may be set uniform if a better estimate is not available; ~φ(0) must be

normalised so that the corresponding total power equals P .

Line #2: The variable Sn denotes the total size of samples combined over the

first n simulated iteration steps, Sn =
∑n

i=1 si. When ~φ(0) is guessed then

it is reasonable to set S0 at zero, as depicted in Algorithm 1. In that case,

~φ(0) will not be reflected in the relaxed flux (power) solution, and ~φ(0) will

be used only to set up the initial temperature and coolant nuclide fields.

When ~φ(0) is a very good approximation of the steady-state flux (power)

distribution then S0 should represent the sample-size that a Monte Carlo

calculation would need to calculate ~φ(0) to the same precision. When
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S0 > 0 then ~φ(0) is reflected in the final relaxed flux (power) solution.

Line #3: The stopping criterion for the iteration is not covered here; it may

be set up e.g. by monitoring the convergence of the relaxed solution, see

(Dufek and Gudowski, 2006).

Line #4: Monte Carlo criticality codes usually require to specify the neutron

batch size, b, and the number of active cycles, c, to be simulated. Knowing

the total number of neutron histories sn, the user can for instance fix the

batch size b for all steps, and compute the number of cycles, c = sn/b.

Note that when this line is altered to

sn ← const.

(i.e., the sample-size is fixed over all steps) and S0 = 0 then the step-size

is generated according to the Robbins-Monro algorithm at line #6.

Line #7: Here, the temperature field is computed according to the flux (or

power) distribution ~φ(n−1).

Line #8: While ~N(n) formally denotes the coolant nuclide field, the thermal-

hydraulic calculation may provide directly the coolant density distribution.

Line #9: The Monte Carlo code evaluates the neutron flux (or power) distribu-

tion via simulating sn neutron histories here. The computed distribution

is saved in vector ~Gn.

Line #10: The neutron flux (or power) distribution ~Gn must be normalised

to conform to the total power P .

Line #11: The relaxation is applied to the flux (power) distribution here.

5. Discussion

As for the choice of the initial sample-size s1, we recommend to choose such a

value that the active cycles of the first Monte Carlo criticality calculation would
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take only a very small fraction (around one or few %) of the total acceptable

computational time allocated to the whole calculation. Moreover, s1 should not

be too large because the increase in the sample-size, sn−sn−1, approaches s1/2

over the iteration steps, as follows from Eq. (14); a large value of s1 would result

in a rapid growth of simulated cycles over the iteration steps.

An open question is the selection of the initial fission source and the number

of inactive cycles to be simulated at each Monte Carlo criticality calculation. At

the first iteration step, we suggest to set up the fission source distribution same

as the one of ~φ(0) (only scaled appropriately). For each of the following iteration

steps it appears reasonable to use the fission source distribution converged in

the previous step.
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