

Advanced Numerical Simulation for Reactor Safety: The High Performance Monte **Carlo (HPMC) Reactor Core Analysis Project**

V. Sánchez (KIT), J. E. Hoogenboom (DNC), A. Travleev (KIT), J. Dufek (KTH), J. Leppänen (VTT), A. Ivanov (KIT) Victor.Sanchez@kit.edu (HPMC Coordinator)

Main goals:

- Improved coupling with thermal-hydraulics
- Optimised depletion calculations
- Time-dependent Monte Carlo codes
- Use of High Performance Computing techniques

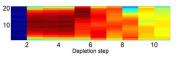
HPMC Calculation Tools:

- SERPENT MCNP
- SUBCHANFLOW (SCF)
- Coupled Codes:
 - MCNP/SUBCHANFLOW
 - SERPENT/SCE

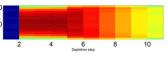
High Fidelity MC/TH Coupling: PWR 3x3 FA

MCNP/SUBCHANFLOW Simulations:

- Internal coupling
- Uniform convergence
- Stochastic approximation Optimised convergence
- acceleration
- On-the-fly T-interpolation of XS Variance reduction with an iterative flux-based Weight
- Window technique Accelerated tallying with custom
- written Collision Density and Track-length estimators Parallelisation of MCNP and SCF
- with hybrid MPI/OpenMP
- Utilization of HPC Blue Gene/Q

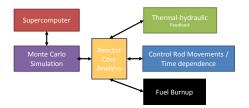

ρ(x₁,y₁,z₁), Τ (x₁,y₁,z₁) ρ(x₂,y₂,z₂), Τ (x₂,y₂,z₂) 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 ρ(x₃,y₃,z₃), Τ (x₃,y₃,z₃) 3D Online TH feedback during neutron history simulation

www.fp7-hpmc.eu


Weight window mesh and 2D power

Optimal and stable Monte Carlo Depletion Integration

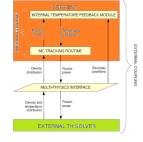
- · Numerical instability of the commonly used predictorcorrector method was demonstrated in MC burnup calculations.
- New Stochastic Implicit Euler • (SIE) based MC burnup scheme was suggested.
- The SIE-based scheme was proved to be stable for any time step length, which was also demonstrated on a PWR-FA MC burnup calculations

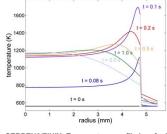


Spatial distribution of Xe-135 in a conventional predictor corrector based MC-burnup calculation of a with 10.0 MWd/kgU step. PWR-FA

Spatial distribution of Xe-135 in a SIE-based MC-burnup calculation of a PWR-FA with 10.0 MWd/kgU step (same statistics in all calculations)

Main Elements of High Fidelity MC/TH Core Analysis



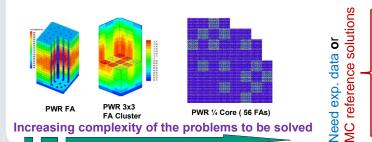

Time-dependent Monte Carlo Methods

- Goal: develop Dynamic MC capable of dealing with time-dependent problems including thermal-hydraulic feedback for safety assessment
 - Major challenges in the statistics of predicted power as a function of time:
 - · The inherent statistics in the chain length of prompt neutrons
 - Large difference in lifetime of a prompt neutron chain (less than 1 ms)
 - Decay time of neutron precursors (0.1 to 100 s)
 - · Control rod movement
 - · Parallelisation of time intervals
- Solution approach:
 - Introduction of a new techniques to reduce the variance
 - Introduction of a new and accurate technique to deal with moving control rods or control rod banks
- Status: Developments for MCNP and SERPENT are not complete. Preliminary capability to describe prompt neutrons in testing phase, extensions for treatment of delay neutrons underway.

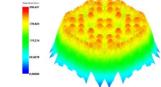
SERPENT-2 Multi-physics Capabilities

- Based on the combination of internal solvers and external coupling via a universal The internal modules are:
 - 1) The FINIX light-weight thermo-mechanical solver for steady-state and transient heat transfer at pin level.
 - 2) The COSY light-weight three-dimensional system / component scale thermal-hydraulics solver.
- The MP-interface is designed to pass state variables and power distributions between Serpent and external codes (CFD, system-scale TH, fuel performance) Universal and versatile scheme not limited to any particular code.
- Methods still under development, and the first results of coupled calculations are expected by the end of 2013.

Multi-Physics Features of SERPENT 2


DYN3D-PPR: Pin power distribution in the

core for the steady state conditions of the


boron dilution benchmar

SERPEN2/FINIX: Temperature profile in a fuel pin after a reactivity transient

Medium and long term goals of HPMC: provide reference solutions for static and time-dependent deterministic codes (diffusion or transport) and analysis of safety cases (Transients)

Diffusion Solution + PPR SP3 Transport Solution + TH

DYNSUB: Full core axially cumulated power density distribution [W/cm³]

KIT - University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz Association

3D Rel. Power distribution